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Abstract—This paper proposes LARS, a location-aware rec-
ommender system that uses location-based ratings to produce
recommendations. Traditional recommender systems do not con-
sider spatial properties of users nor items; LARS, on the other
hand, supports a taxonomy of three novel classes of location-
based ratings, namely, spatial ratings for non-spatial items, non-
spatial ratings for spatial items, and spatial ratings for spatial items.
LARS exploits user rating locations through user partitioning, a
technique that influences recommendations with ratings spatially
close to querying users in a manner that maximizes system
scalability while not sacrificing recommendation quality. LARS
exploits item locations using travel penalty, a technique that
favors recommendation candidates closer in travel distance to
querying users in a way that avoids exhaustive access to all spatial
items. LARS can apply these techniques separately, or together,
depending on the type of location-based rating available. Exper-
imental evidence using large-scale real-world data from both the
Foursquare location-based social network and the MovieLens
movie recommendation system reveals that LARS is efficient,
scalable, and capable of producing recommendations twice as
accurate compared to existing recommendation approaches.

I. INTRODUCTION

Recommender systems make use of community opinions
to help users identify useful items from a considerably large
search space (e.g., Amazon inventory [1], Netflix movies [2]).
The technique used by many of these systems is collaborative
filtering (CF) [3], which analyzes past community opinions
to find correlations of similar users and items to suggest
k personalized items (e.g., movies) to a querying user u.
Community opinions are expressed through explicit ratings
represented by the triple (user, rating, item) that represents
a user providing a numeric rating for an item.
Currently, myriad applications can produce location-based

ratings that embed user and/or item locations. For example,
location-based social networks (e.g., Foursquare [4] and Face-
book Places [5]) allow users to “check-in” at spatial destina-
tions (e.g., restaurants) and rate their visit, thus are capable of
associating both user and item locations with ratings. Such rat-
ings motivate an interesting new paradigm of location-aware
recommendations, whereby the recommender system exploits
the spatial aspect of ratings when producing recommendations.
Existing recommendation techniques [6] assume ratings are
represented by the (user, rating, item) triple, thus are ill-
equipped to produce location-aware recommendations.
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Fig. 1. Preference locality in location-based ratings.

In this paper, we propose LARS, a novel location-aware
recommender system built specifically to produce high-quality
location-based recommendations in an efficient manner. LARS
produces recommendations using a taxonomy of three types
of location-based ratings within a single framework: (1) Spa-
tial ratings for non-spatial items, represented as a four-tuple
(user, ulocation, rating, item), where ulocation represents a
user location, for example, a user located at home rating a
book; (2) non-spatial ratings for spatial items, represented as
a four-tuple (user, rating, item, ilocation), where ilocation
represents an item location, for example, a user with unknown
location rating a restaurant; (3) spatial ratings for spatial
items, represented as a five-tuple (user, ulocation, rating,
item, ilocation), for example, a user at his/her office rating
a restaurant visited for lunch. Traditional rating triples can be
classified as non-spatial ratings for non-spatial items and do
not fit this taxonomy.

A. Motivation: A Study of Location-Based Ratings

The motivation for our work comes from analysis of two
real-world location-based rating datasets: (1) a subset of the
well-known MovieLens dataset [7] containing approximately
87K movie ratings associated with user zip codes (i.e., spa-
tial ratings for non-spatial items) and (2) data from the
Foursquare [4] location-based social network containing user
visit data for 1M users to 643K venues across the United States
(i.e., spatial ratings for spatial items). Appendix B provides
further details of both datasets. In our analysis we consistently
observed two interesting properties that motivate the need for
location-aware recommendation techniques.
Preference locality. Preference locality suggests users from

a spatial region (e.g., neighborhood) prefer items (e.g., movies,
destinations) that are manifestly different than items preferred
by users from other, even adjacent, regions. Figure 1(a) lists
the top-4 movie genres using average MovieLens ratings of
users from different U.S. states. While each list is different,
the top genres from Florida differ vastly from the others.
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Florida’s list contains three genres (“Fantasy”, “Animation”,
“Musical”) not in the other lists. This difference implies movie
preferences are unique to specific spatial regions, and confirms
previous work from the New York Times [8] that analyzed
Netflix user queues across U.S. zip codes and found similar
differences. Meanwhile, Figure 1(b) summarizes our observa-
tion of preference locality in Foursquare by depicting the visit
destinations for users from three adjacent Minnesota cities.
Each sample exhibits diverse behavior: users from Falcon
Heights, MN favor venues in St. Paul, MN (17% of visits)
Minneapolis (13%), and Roseville, MN (10%), while users
from Robbinsdale, MN prefer venues in Brooklyn Park, MN
(32%) and Robbinsdale (20%). Preference locality suggests
that recommendations should be influenced by location-based
ratings spatially close to the user. The intuition is that localiza-
tion influences recommendation using the unique preferences
found within the spatial region containing the user.
Travel locality. Our second observation is that, when recom-

mended items are spatial, users tend to travel a limited distance
when visiting these venues. We refer to this property as “travel
locality.” In our analysis of Foursquare data, we observed
that 45% of users travel 10 miles or less, while 75% travel
50 miles or less. This observation suggests that spatial items
closer in travel distance to a user should be given precedence
as recommendation candidates. In other words, a recommen-
dation loses efficacy the further a querying user must travel
to visit the destination. Existing recommendation techniques
do not consider travel locality, thus may recommend users
destinations with burdensome travel distances (e.g., a user in
Chicago receiving restaurant recommendations in Seattle).

B. Our Contribution: LARS - A Location-Aware Recommender

Like traditional recommender systems, LARS suggests k

items personalized for a querying user u. However, LARS is
distinct in its ability to produce location-aware recommenda-
tions using each of the three types of location-based rating
within a single framework.
LARS produces recommendations using spatial ratings for

non-spatial items, i.e., the tuple (user, ulocation, rating, item),
by employing a user partitioning technique that exploits
preference locality. This technique uses an adaptive pyramid
structure to partition ratings by their user location attribute
into spatial regions of varying sizes at different hierarchies.
For a querying user located in a region R, we apply an
existing collaborative filtering technique that utilizes only the
ratings located in R. The challenge, however, is to determine
whether all regions in the pyramid must be maintained in order
to balance two contradicting factors: scalability and locality .
Maintaining a large number of regions increases locality
(i.e., recommendations unique to smaller spatial regions),
yet adversely affects system scalability because each region
requires storage and maintenance of a collaborative filtering
data structure necessary to produce recommendations (i.e., the
recommender model). The LARS pyramid dynamically adapts
to find the right pyramid shape that balances scalability and
recommendation locality.

LARS produces recommendations using non-spatial ratings
for spatial items, i.e., the tuple (user, rating, item, ilocation),
by using travel penalty, a technique that exploits travel lo-
cality. This technique penalizes recommendation candidates
the further they are in travel distance to a querying user. The
challenge here is to avoid computing the travel distance for
all spatial items to produce the list of k recommendations, as
this will greatly consume system resources. LARS addresses
this challenge by employing an efficient query processing
framework capable of terminating early once it discovers that
the list of k answers cannot be altered by processing more
recommendation candidates. To produce recommendations us-
ing spatial ratings for spatial items, i.e., the tuple (user,
ulocation, rating, item, ilocation) LARS employs both the user
partitioning and travel penalty techniques to address the user
and item locations associated with the ratings. This is a salient
feature of LARS, as the two techniques can be used separately,
or in concert, depending on the location-based rating type
available in the system.

We experimentally evaluate LARS using real location-based
ratings from Foursquare [4] and MovieLens [7], along with
a generated user workload of both snapshot and continuous
queries. Our experiments show LARS is scalable to real
large-scale recommendation scenarios. Since we have access
to real data, we also evaluate recommendation quality by
building LARS with 80% of the spatial ratings and testing
recommendation accuracy with the remaining 20% of the
(withheld) ratings. We find LARS produces recommendations
that are twice as accurate (i.e., able to better predict user
preferences) compared to traditional collaborative filtering. In
summary, the contributions of this paper are as follows:

• We provide a novel classification of three types of
location-based ratings not supported by existing recom-
mender systems: spatial ratings for non-spatial items,
non-spatial ratings for spatial items, and spatial ratings
for spatial items.

• We propose LARS, a novel location-aware recommender
system capable of using three classes of location-based
ratings. Within LARS, we propose: (a) a user parti-
tioning technique that exploits user locations in a way
that maximizes system scalability while not sacrificing
recommendation locality and (b) a travel penalty tech-
nique that exploits item locations and avoids exhaustively
processing all spatial recommendation candidates.

• We provide experimental evidence that LARS scales to
large-scale recommendation scenarios and provides better
quality recommendations than traditional approaches.

This paper is organized as follows: Section II gives an
overview of LARS. Sections III, IV, and V cover LARS
recommendation techniques using spatial ratings for non-
spatial items, non-spatial ratings for spatial items, and spatial
ratings for spatial items, respectively. Section VI provides
experimental analysis. Section VII covers related work, while
Section VIII concludes the paper.
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Fig. 2. Item-based CF model generation.

II. LARS OVERVIEW

This section provides an overview of LARS by discussing
the query model and the collaborative filtering method.

A. LARS Query Model

Users (or applications) provide LARS with a user id U ,
numeric limit K , and location L; LARS then returns K

recommended items to the user. LARS supports both snapshot
(i.e., one-time) queries and continuous queries, whereby a user
subscribes to LARS and receives recommendation updates as
her location changes. The technique LARS uses to produce
recommendations depends on the type of location-based rating
available in the system. Query processing support for each type
of location-based rating is discussed in Sections III to V.

B. Item-Based Collaborative Filtering

LARS uses item-based collaborative filtering (abbr. CF)
as its primary recommendation technique, chosen due to its
popularity and widespread adoption in commercial systems
(e.g., Amazon [1]). Collaborative filtering (CF) assumes a
set of n users U = {u1, ..., un} and a set of m items
I = {i1, ..., im}. Each user uj expresses opinions about a set
of items Iuj

⊆ I. Opinions can be a numeric rating (e.g., the
Netflix scale of one to five stars [2]), or unary (e.g., Facebook
“check-ins” [5]). Conceptually, ratings are represented as a
matrix with users and items as dimensions, as depicted in
Figure 2(a). Given a querying user u, CF produces a set of
k recommended items Ir ⊂ I that u is predicted to like the
most.
Phase I: Model Building. This phase computes a similarity

score sim(ip,iq) for each pair of objects ip and iq that have
at least one common rating by the same user (i.e., co-rated
dimensions). Similarity computation is covered below. Using
these scores, a model is built that stores for each item i ∈ I, a
list L of similar items ordered by a similarity score sim(ip,iq),
as depicted in Figure 2(b). Building this model is an O(R

2

U )
process, where R and U are the number of ratings and users,
respectively. It is common to truncate the model by storing,
for each list L, only the n most similar items with the highest
similarity scores [9]. The value of n is referred to as the model
size and is usually much less than |I|.
Phase II: Recommendation Generation. Given a querying

user u, recommendations are produced by computing u’s
predicted rating P(u,i) for each item i not rated by u [9]:

P(u,i) =

∑
l∈L sim(i, l) ∗ ru,l
∑

l∈L |sim(i, l)|
(1)

Before this computation, we reduce each similarity list L to
contain only items rated by user u. The prediction is the sum

Fig. 3. Item-based similarity calculation.

of ru,l, a user u’s rating for a related item l ∈ L weighted by
sim(i,l), the similarity of l to candidate item i, then normalized
by the sum of similarity scores between i and l. The user
receives as recommendations the top-k items ranked by P(u,i).
Computing Similarity. To compute sim(ip, iq), we repre-

sent each item as a vector in the user-rating space of the rating
matrix. For instance, Figure 3 depicts vectors for items ip and
iq from the matrix in Figure 2(a). Many similarity functions
have been proposed (e.g., Pearson Correlation, Cosine); we
use the Cosine similarity in LARS due to its popularity:

sim(ip, iq) =
�ip · �iq

‖�ip‖‖�iq‖
(2)

This score is calculated using the vectors’ co-rated dimensions,
e.g., the Cosine similarity between ip and iq in Figure 3
is .7 calculated using the circled co-rated dimensions. Cosine
distance is useful for numeric ratings (e.g., on a scale [1,5]).
For unary ratings, other similarity functions are used (e.g.,
absolute sum [10]).
While we opt to use item-based CF in this paper, no

factors disqualify us from employing other recommendation
techniques. For instance, we could easily employ user-based
CF [6], that uses correlations between users (instead of items).

III. SPATIAL USER RATINGS FOR

NON-SPATIAL ITEMS

This section describes how LARS produces recommenda-
tions using spatial ratings for non-spatial items represented by
the tuple (user, ulocation, rating, item). The idea is to exploit
preference locality, i.e., the observation that user opinions
are spatially unique (based on analysis in Section I-A). We
identify three requirements for producing recommendations
using spatial ratings for non-spatial items: (1) Locality: rec-
ommendations should be influenced by those ratings with user
locations spatially close to the querying user location (i.e., in
a spatial neighborhood); (2) Scalability: the recommendation
procedure and data structure should scale up to large number
of users; (3) Influence: system users should have the ability to
control the size of the spatial neighborhood (e.g., city block,
zip code, or county) that influences their recommendations.
LARS achieves its requirements by employing a user parti-

tioning technique that maintains an adaptive pyramid structure,
where the shape of the adaptive pyramid is driven by the
three goals of locality, scalability, and influence. The idea
is to adaptively partition the rating tuples (user, ulocation,
rating, item) into spatial regions based on the ulocation
attribute. Then, LARS produces recommendations using any
existing collaborative filtering method (we use item-based
CF) over the remaining three attributes (user, rating, item)
of only the ratings within the spatial region containing the
querying user. We note that ratings can come from users with
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Fig. 4. Partial pyramid data structure.

varying tastes, and that our method only forces collaborative
filtering to produce personalized user recommendations based
only on ratings restricted to a specific spatial region. In this
section, we describe the pyramid structure in Section III-A,
query processing in Section III-B, and finally data structure
maintenance in Section III-C.

A. Data Structure

LARS employs a partial pyramid structure [11] (equivalent
to a partial quad-tree [12]) as depicted in Figure 4. The pyra-
mid decomposes the space into H levels (i.e., pyramid height).
For a given level h, the space is partitioned into 4h equal area
grid cells. For example, at the pyramid root (level 0), one grid
cell represents the entire geographic area, level 1 partitions
space into four equi-area cells, and so forth. We represent
each cell with a unique identifier cid. In each cell, we store
an item-based collaborative filtering model built using only
the spatial ratings with user locations contained in the cell’s
spatial region. A rating may contribute to up toH collaborative
filtering models: one per each pyramid level starting from
the lowest maintained grid cell containing the embedded user
location up to the root level. Note that the root cell (level 0) of
the pyramid represents a “traditional” (i.e., non-spatial) item-
based collaborative filtering model. Levels in the pyramid can
be incomplete, as LARS will periodically merge or split cells
based on trade-offs of locality and scalability (discussed in
Section III-C). For example, in Figure 4, the four cells in the
upper right corner of level 3 are not maintained (depicted as
blank white squares).
We chose to employ a pyramid as it is a “space-partitioning”

structure that is guaranteed to completely cover a given space.
For our purposes, “data-partitioning” structures (e.g., R-trees)
are less ideal, as they index data points and are not guaranteed
to completely cover a given space.

B. Query Processing

Given a recommendation query (as described in Sec-
tion II-A) with user location L and a limit K , LARS performs
two query processing steps: (1) The user location L is used
to find the lowest maintained cell C in the adaptive pyramid
that contains L. This is done by hashing the user location to
retrieve the cell at the lowest level of the pyramid. If this cell
is not maintained, we return the nearest maintained ancestor
cell. (2) The top-k recommended items are generated using
the item-based collaborative filtering technique (covered in
Section II-B) using the model stored at C. As mentioned

earlier, the model in C is built using only the spatial ratings
associated with user locations within C.
In addition to traditional recommendation queries (i.e.,

snapshot queries), LARS also supports continuous queries and
can account for the influence requirement for each user as
follows.
Continuous queries. LARS evaluates a continuous query

in full once it is issued, and sends recommendations back
to a user U as an initial answer. LARS then monitors the
movement of U using her location updates. As long as U

does not cross the boundary of her current grid cell, LARS
does nothing as the initial answer is still valid. Once U crosses
a cell boundary, LARS reevaluates the recommendation query
for the new cell and only sends incremental updates [13] to the
last reported answer. Like snapshot queries, if a cell at level h
is not maintained, the query is temporarily transferred higher
in the pyramid to the nearest maintained ancestor cell. Note
that since higher-level cells maintain larger spatial regions,
the continuous query will cross spatial boundaries less often,
reducing the amount of required recommendation updates.
Influence level. LARS addresses the influence requirement

by allowing querying users to specify an optional influence
level (in addition to location L and limit K) that controls
the size of the spatial neighborhood used to influence their
recommendations. An influence level I maps to a pyramid
level and acts much like a “zoom” level in Google or Bing
maps (e.g., city block, neighborhood, entire city). The level I
instructs LARS to process the recommendation query starting
from the grid cell containing the querying user location at
level I , instead of the lowest maintained grid cell (the default).
An influence level of zero forces LARS to use the root cell
of the pyramid, and thus act as a traditional (non-spatial)
collaborative filtering recommender system.

C. Data Structure Maintenance

This section describes building and maintaining the pyramid
data structure. Initially, to build the pyramid, all location-based
ratings currently in the system are used to build a complete
pyramid of height H , such that all cells in all H levels are
present and contain a collaborative filtering model. The initial
height H is chosen according to the level of locality desired,
where the cells in the lowest pyramid level represent the most
localized regions. After this initial build, we invoke a merging
step that scans all cells starting from the lowest level h and
merges quadrants (i.e., four cells with a common parent) into
their parent at level h − 1 if it is determined that a tolerated
amount of locality will not be lost (merging is discussed
in Section III-C1). We note that while the original partial
pyramid [11] was concerned with spatial queries over static
data, it did not address pyramid maintenance.
As time goes by, new users, ratings, and items will be added

to the system. This new data will both increase the size of the
collaborative filtering models maintained in the pyramid cells,
as well as alter recommendations produced from each cell.
To account for these changes, LARS performs maintenance
on a cell-by-cell basis. Maintenance is triggered for a cell C
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Algorithm 1 Pyramid maintenance algorithm
1: /* Called after cell C receives N% new ratings */
2: Function PyramidMaintenance(Cell C, Level h)
3: /*Step I: Model Rebuild */
4: Rebuild item-based collaborative filtering model for cell C
5: /*Step II: Merge/Split Maintenance */
6: if (C has children quadrant q maintained at level h + 1) then
7: if (All cells in q have no maintained children) then
8: CheckDoMerge(q,C) /* Merge covered in Section III-C1 */
9: end if
10: else
11: CheckDoSplit(C) /* Split covered in Section III-C2 */
12: end if
13: return

once it receives N% new ratings; the percentage is computed
from the number of existing ratings in C. We do this because
an appealing quality of collaborative filtering is that as a
model matures (i.e., more data is used to build the model),
more updates are needed to significantly change the top-k
recommendations produced from it [14]. Thus, maintenance
is needed less often. Algorithm 1 provides the pseudocode
for the LARS maintenance algorithm. The algorithm takes as
input a pyramid cell C and level h, and includes two main
steps: model rebuild and merge/split maintenance.
Step I: Model Rebuild. The first step is to rebuild the

item-based collaborative filtering (CF) model for a cell C, as
described in Section II-B (line 4). Rebuilding the CF model
is necessary to allow the model to “evolve” as new location-
based ratings enter the system (e.g., accounting for new items,
ratings, or users). Given the cost of building the CF model is
O(R

2

U ) (per Section II-B), the cost of the model rebuild for a
cell C at level h is (R/4h)2

(U/4h) =
R2

4hU , assuming ratings and users
are uniformly distributed.
Step II: Merging/Split Maintenance. After rebuilding the

CF model for cell C, LARS invokes a merge/split maintenance
step that may decide to merge or split cells based on trade-
offs in scalability and locality. The algorithm first checks if
C has a child quadrant q maintained at level h + 1 (line 6),
and that none of the four cells in q have maintained children
of their own (line 7). If both cases hold, LARS considers
quadrant q as a candidate to merge into its parent cell C

(calling function CheckDoMerge on line 8). We provide details
of merging in Section III-C1. On the other hand, if C does
not have a child quadrant maintained at level h+ 1 (line 10),
LARS considers splitting C into four child cells at level h+1
(calling function CheckDoSplit on line 11). The split opera-
tion is covered in Section III-C2. Merging and splitting are
performed completely in quadrants (i.e., four equi-area cells
with the same parent). We made this decision for simplicity in
maintaining the partial pyramid. However, we also discuss (in
Section III-D) relaxing this constraint by merging and splitting
at a finer granularity than a quadrant.
We note the following features of pyramid maintenance:

(1) Maintenance can be performed completely offline, i.e.,
LARS can continue to produce recommendations using the
”old” pyramid cells while part of the pyramid is being updated;
(2) maintenance does not entail rebuilding the whole pyramid
at once, instead, only one cell is rebuilt at a time; (3) main-

tenance is performed only after N% new ratings are added to
a pyramid cell, meaning maintenance will be amortized over
many operations.
1) Cell Merging: Merging entails discarding an entire

quadrant of cells at level h with a common parent at level h−1.
Merging improves scalability (i.e., storage and computational
overhead) of LARS, as it reduces storage by discarding the
item-based collaborative filtering (CF) models of the merged
cells. Furthermore, merging improves computational overhead
in two ways: (a) less maintenance computation, since less
CF models are periodically rebuilt, and (b) less continuous
query processing computation, as merged cells represent a
larger spatial region, hence, users will cross cell boundaries
less often triggering less recommendation updates. Merging
hurts locality, since merged cells capture community opinions
from a wider spatial region, causing less unique (i.e., “local”)
recommendations than smaller cells.
To determine whether to merge a quadrant q into its

parent cell CP (i.e., function CheckDoMerge on line 8 in
Algorithm 1), we calculate two percentage values: (1) local-
ity loss, the amount of locality lost by (potentially) merging,
and (2) scalability gain, the amount of scalability gained by
(potentially) merging. Details of calculating these percentages
are covered next. When deciding to merge, we define a system
parameter M, a real number in the range [0,1] that defines
a tradeoff between scalability gain and locality loss. LARS
merges (i.e., discards quadrant q) if:

(1 −M) ∗ scalability gain >M∗ locality loss (3)

A smaller M value implies gaining scalability is important
and the system is willing to lose a large amount of locality
for small gains in scalability. Conversely, a larger M value
implies scalability is not a concern, and the amount of locality
lost must be small in order to merge. At the extremes, setting
M=0 (i.e., always merge) implies LARS will function as
a traditional CF recommender system, while setting M=1
causes LARS to never merge, i.e., LARS will employ a
complete pyramid structure maintaining all cells at all levels.
Calculating Locality Loss. We calculate locality loss

by observing the loss of recommendation uniqueness when
discarding a cell quadrant q and using its parent cell CP

to produce recommendations in its place. We perform this
calculation in three steps. (1) Sample. We take a sample of
diverse system users U that have at least one rating within CP

(and by definition one of the more localized cells Cu ∈ q).
Due to space, we do not discuss user sampling in detail,
however, the intuition is to select a set of users with diverse
tastes by comparing each user’s rating history. We measure
diversity using the Cosine distance between users in the same
manner as Equation 2, except we employ user vectors in the
calculation (instead of item vectors). (2) Compare. For each
user u ∈ U , we measure the potential loss of recommendation
uniqueness by comparing the list of top-k recommendations
RP produced from the merged cell CP (i.e., the parent) with
the list of recommendationsRu that the user receives from the
more localized cell Cu ∈ q. Formally, the loss of uniqueness
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Fig. 5. Merge and split example.

can be computed as the ratio |Ru−RP |
k , which indicates the

number of recommended items that appear in Ru but not in the
parent recommendationRP , normalized to the total number of
recommended objects k. (3) Average. We calculate the average
loss of uniqueness over all users in U to produce a single
percentage value, termed locality loss.
Calculating scalability gain. Scalability gain is measured

in storage and computation savings. We measure scalability
gain by summing the model sizes for each of the merged (i.e.,
child) cells (abbr. sizem), and divide this value by the sum
of sizem and the size of the parent cell. We refer to this
percentage as the storage gain. We also quantify computation
savings using storage gain as a surrogate measurement, as
computation is considered a direct function of the amount of
data in the system.
Cost. The cost of CheckDoMerge is |U|(2(n|I|

4h
)+k), where

|U| is the size of the user sample, |I| is the number of
items in the model stored within a cell, n is the model
size (Section II-B), and k is the cost of comparing two
recommendation lists. We note that this cost is less than the
model re-build step.
Example. Figure 5 depicts four merge candidate cells C1

to C4 at level h merging into their parent CP at level h− 1,
along with four sampled users u1 to u4. Each user location is
shown twice: once within one of the cells Cu and then at the
parent cell CP . The recommendations produced for each user
from cell Cu and CP are provided in the table in Figure 5,
along with the locality loss for each user. For example, for
user u1, cell C1 produces recommendations Ru1={I1, I2, I5,
I6}, while CP produces recommendations RP={I1, I2, I5,
I7}. Thus, the loss of locality for u1 is 25% as only one item
out of four (I6) will be lost if merging occurs. Given locality
loss for the four users u1 to u4 as 25%, 25%, 0%, and 50%,
the final locality loss value is the average 25%. To calculate
scalability gain, assume the sum of the model sizes for cells
C1 to C4 and CP is 4GB, and the sum of the model sizes for
cells C1 to C4 is 2GB. Then, the scalability gain is 2

4=50%.
AssumingM=0.7, then (0.3 * 50) < (0.7 * 25), meaning that
LARS will not merge cells C1, C2, C3, C4 into CP .
2) Splitting: Splitting entails creating a new cell quadrant at

pyramid level h under a cell at level h− 1. Splitting improves
locality in LARS, as newly split cells represent more granular
spatial regions capable of producing recommendations unique
to the smaller, more “local”, spatial regions. On the other hand,
splitting hurts scalability by requiring storage and maintenance
of more item-based collaborative filtering models. Splitting
also negatively affects continuous query processing, since it

creates more granular cells causing user locations to cross cell
boundaries more often, triggering recommendation updates.
To determine whether to split a cell CP into four child

cells (i.e., function CheckDoSplit on line 11 of Algorithm 1),
we perform a speculative split that creates a temporary child
quadrant qs for CP . Using CP and qs, two percentages are
calculated: locality gain and scalability loss. These values are
the opposite of those calculated for the merge operation. LARS
splits CP only if the following condition holds:

M∗ locality gain > (1−M) ∗ scalability loss (4)

This equation represents the opposite criteria of that presented
for merging in Equation 3. We will next describe how to
perform speculative splitting, followed by a description of how
to calculate locality gain and scalability loss.
Speculative splitting. In order to evaluate locality gain and

scalability loss, we must build, from scratch, the collaborative
filtering (CF) models of the four cells that potentially result
from the split, as they do not exist in the partial pyramid.
As building CF models is non-trivial due to its high cost
(Section II-B), we perform a cheaper speculative split that
builds each model using a random sample of only 50%
of the ratings from the spatial region of each potentially
split cell. LARS uses these models to measure locality gain
and scalability loss. If LARS decides to split, it builds the
completemodel for the newly split cells using all of the ratings.
Speculative splitting is sufficient for calculating locality gain
and scalability loss using the item-based CF technique, as
experiments on real data and workloads have shown that using
50% of the ratings for model-building results in loss of only
3% of recommendation accuracy [9], assuming sufficiently
high number of ratings (i.e., order of thousands). Thus, we
only speculatively split if we have more than 1,000 ratings for
the potentially split cell, otherwise, the model for the cell is
built using all of R.
Calculating locality gain. After speculatively splitting a

cell at level h into four child cells at level h + 1, evaluating
locality gain is performed exactly the same as for merging,
where we compute the ratio of recommendations that will ap-
pear in Ru but not in RP , where Ru and RP are the list of top-
k recommendations generated by the speculatively split cells
C1 to C4 and the existing parent cell CP , respectively. Like the
merging case, we average locality gain over all sampled users.
One caveat here is that if any of the speculatively split cells do
not contain ratings for enough unique items (say less than ten
unique items), we immediately set the locality gain to 0, which
disqualifies splitting. We do this to prevent recommendation
starvation, i.e., not having enough diverse items to produce
meaningful recommendations.
Calculating scalability loss. We calculate scalability loss

by estimating the storage necessary to maintain the newly split
cells. Recall from Section II-B that the maximum size of an
item-based CF model is approximately n|I|, where n is the
model size. We can multiply n|I| by the number of bytes
needed to store an item in a CF model to find an upper-bound
storage size of each potentially split cell. The sum of these four
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estimated sizes (abbr. sizes) divided by the sum of the size
of the existing parent cell and sizes represents the scalability
loss metric.
Cost. The cost of CheckDoSplit is the sum of two operations

(1) the cost of speculatively building four CF models at
level h + 1 using 50% of the rating, which is 4 (0.5R)2

4(h+1)U
(per

Section II-B) and (2) the cost of calculating locality gain and
scalability loss, which is the same cost as CheckDoMerge.
Example. Consider the example used for merging in Fig-

ure 5, but now assume we have only a cell CP , and are trying
to determine whether to split CP into four new cells C1 to
C4. Locality gain will be computed as in the table in Figure 5
to be 25%. Further, assume that we estimate the extra storage
overhead for splitting (i.e., storage loss) to be 50%. Assuming
M=0.7, then (0.7 * 25) > (0.3 * 50), meaning that LARS
will decide to split CP into four cells as locality gain is
significantly higher than scalability loss.

D. Partial Merging and Splitting

So far, we have assumed cells are merged and split in com-
plete quadrants. We now relax this constraint by discussing
the changes to LARS necessary to support partial merging
and splitting of pyramid cells.
1) Partial Merging: It may be beneficial to partially merge

at a more granular level in order to sacrifice less locality while
still gaining scalability. For example, in Figure 5 we may
only want to merge cells C1 and C2 while leaving cells C3

and C4 intact, meaning three child cells would be maintained
under the example parent CP . To support partial merging, all
techniques described in Section III-C1 remain the same, with
two exceptions: (1) The resulting merged candidate cell (e.g.,
C1 merged with C2, abbreviated C12) plays the role of the
“parent” cell in evaluating locality loss; (2) When calculating
storage gain, we must subtract the size of the resulting merge
candidate cell (e.g., C12) from the sum of the sizes of cells that
will merge (e.g., C1 and C2), since we no longer discard the
merged cells completely, i.e., the resulting merged cell now
replaces the individual cells.
Partial merging involves extra overhead (compared to merg-

ing complete quadrants) since we must build, from scratch,
the CF model for the candidate merge result cell (e.g., C12) in
order to calculate locality loss. In order to perform the build
efficiently, we perform a speculative merge that builds the CF
model using only 50% of the rating data. This is the same
method used in speculative splitting (Section III-C2), except
applied to the case of merging.
2) Partial Splitting: To support partial splitting, all tech-

niques discussed in Section III-C2 remain the same. There are,
however, two distinguishable cases of partial splitting: (1) A
“parent” at level h splitting into less than four cells at level
h+ 1. This case requires speculative splitting to be aware of
which “partial” child cells to create. (2) A cell at level h is
split into two or three separate cells that remain at level h,
i.e., cells at level h+1 are not created. This case requires that
a previous partial merge took place that originally reduced a
cell quadrant to two or three cells.

IV. NON-SPATIAL USER RATINGS FOR

SPATIAL ITEMS

This section describes how LARS produces recommenda-
tions using non-spatial ratings for spatial items represented
by the tuple (user, rating, item, ilocation). The idea is to
exploit travel locality, i.e., the observation that users limit
their choice of spatial venues based on travel distance (based
on analysis in Section I-A). Traditional (non-spatial) recom-
mendation techniques may produces recommendations with
burdensome travel distances (e.g., hundreds of miles away).
LARS produces recommendations within reasonable travel
distances by using travel penalty, a technique that penalizes
the recommendation rank of items the further in travel distance
they are from a querying user. Travel penalty may incur ex-
pensive computational overhead by calculating travel distance
to each item. Thus, LARS employs an efficient query pro-
cessing technique capable of early termination to produce the
recommendations without calculating the travel distance to all
items. Section IV-A describes the query processing framework
while Section IV-B describes travel distance computation.

A. Query Processing

Query processing for spatial items using the travel penalty
technique employs a single system-wide item-based collabo-
rative filtering model to generate the top-k recommendations
by ranking each spatial item i for a querying user u based on
RecScore(u, i), computed as:

RecScore(u, i) = P (u, i)− TravelPenalty(u, i) (5)

P (u, i) is the standard item-based CF predicted rating of item
i for user u (see Section II-B). TravelPenalty(u, i) is the
road network travel distance between u and i normalized to
the same value range as the rating scale (e.g., [0, 5]).
When processing recommendations, we aim to avoid cal-

culating Equation 5 for all candidate items to find the top-k
recommendations, which can become quite expensive given
the need to compute travel distances. To avoid such computa-
tion, we evaluate items in monotonically increasing order of
travel penalty (i.e., travel distance), enabling us to use early
termination principles from top-k query processing [15], [16],
[17]. We now present the main idea of our query processing
algorithm and in the next section discuss how to compute
travel penalties in an increasing order of travel distance.

Algorithm 2 provides the pseudo code of our query pro-
cessing algorithm that takes a querying user id U , a location
L, and a limit K as input, and returns the list R of top-k
recommended items. The algorithm starts by running a k-
nearest-neighbor algorithm to populate the list R with k items
with lowest travel penalty; R is sorted by the recommendation
score computed using Equation 5. This initial part is concluded
by setting the lowest recommendation score value (LowestRec-
Score) as the RecScore of the kth item in R (Lines 3 to 8).
Then, the algorithm starts to retrieve items one by one in
the order of their penalty score. This can be done using an
incremental k-nearest-neighbor algorithm, as will be described
in the next section. For each item i, we calculate the maximum
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Algorithm 2 Travel Penalty Algorithm for Spatial Items
1: Function LARS SpatialItems(User U , Location L, Limit K)
2: /* Populate a list R with a set of K items*/
3: R ← φ
4: for (K iterations) do
5: i ← Retrieve the item with the next lowest travel penalty (Section IV-B)
6: Insert i into R ordered by RecScore(U, i) computed by Equation 5
7: end for
8: LowestRecScore← RecScore of the kth object in R
9: /*Retrieve items one by one in order of their penalty value */
10: while there are more items to process do
11: i ← Retrieve the next item in order of penalty score (Section IV-B)
12: MaxPossibleScore ← MAX RATING - i.penalty
13: if MaxPossibleScore ≤ LowestRecScore then
14: return R /* early termination - end query processing */
15: end if
16: RecScore(U, i) ← P (U, i) - i.penalty /* Equation 5 */
17: if RecScore(U, i) > LowestRecScore then
18: Insert i into R ordered by RecScore(U, i)
19: LowestRecScore← RecScore of the kth object in R
20: end if
21: end while
22: return R

possible recommendation score that i can have by subtracting
the travel penalty of i from MAX RATING, the maximum
possible rating value in the system, e.g., 5 (Line 12). If i

cannot make it into the list of top-k recommended items with
this maximum possible score, we immediately terminate the al-
gorithm by returning R as the top-k recommendations without
computing the recommendation score (and travel distance) for
more items (Lines 13 to 15). The rationale here is that since
we are retrieving items in increasing order of their penalty
and calculating the maximum score that any remaining item
can have, then there is no chance that any unprocessed item
can beat the lowest recommendation score in R. If the early
termination case does not arise, we continue to compute the
score for each item i using Equation 5, insert i into R sorted by
its score (removing the kth item if necessary), and adjust the
lowest recommendation value accordingly (Lines 16 to 20).
Travel penalty requires very little maintenance. The only

maintenance necessary is to occasionally rebuild the single
system-wide item-based collaborative filtering model in order
to account for new location-based ratings that enter the system.
Following the reasoning discussed in Section III-C, we rebuild
the model after receiving N% new location-based ratings.

B. Incremental Travel Penalty Computation

This section gives an overview of two methods we imple-
mented in LARS to incrementally retrieve items one by one or-
dered by their travel penalty. The two methods exhibit a trade-
off between query processing efficiency and penalty accuracy:
(1) an online method that provides exact travel penalties but is
expensive to compute, and (2) an offline heuristic method that
is less exact but efficient in penalty retrieval. Both methods
can be employed interchangeably in Line 11 of Algorithm 2.
1) Incremental KNN: An Exact Online Method: To calcu-

late an exact travel penalty for a user u to item i, we employ an
incremental k-nearest-neighbor (KNN) technique [18], [19],
[20]. Given a user location l, incremental KNN algorithms
return, on each invocation, the next item i nearest to u with
regard to travel distance d. In our case, we normalize distance

d to the ratings scale to get the travel penalty in Equation 5.
Incremental KNN techniques exist for both Euclidean dis-
tance [19] and (road) network distance [18], [20]. The ad-
vantage of using Incremental KNN techniques is that they
provide an exact travel distances between a querying user’s
location and each recommendation candidate item. The dis-
advantage is that distances must be computed online at query
runtime, which can be expensive. For instance, the runtime
complexity of retrieving a single item using incremental KNN
in Euclidean space is [19]: O(k+logN ), whereN and k are the
number of total items and items retrieved so far, respectively.
2) Penalty Grid: A Heuristic Offline Method: A more ef-

ficient, yet less accurate method to retrieve travel penalties
incrementally is to use a pre-computed penalty grid. The idea
is to partition space using an n × n grid. Each grid cell c
is of equal size and contains all items whose location falls
within the spatial region defined by c. Each cell c contains
a penalty list that stores the pre-computed penalty values for
traveling from anywhere within c to all other n2−1 destination
cells in the grid; this means all items within a destination grid
cell share the same penalty value. The penalty list for c is
sorted by penalty value and always stores c (itself) as the first
item with a penalty of zero. To retrieve items incrementally, all
items within the cell containing the querying user are returned
one-by-one (in any order) since they have no penalty. After
these items are exhausted, items contained in the next cell in
the penalty list are returned, and so forth until Algorithm 2
terminates early or processes all items.
To populate the penalty grid, we must calculate the penalty

value for traveling from each cell to every other cell in the
grid. We assume items and users are constrained to a road
network, however, we can also use Euclidean space without
consequence. To calculate the penalty from a single source cell
c to a destination cell d, we first find the average distance to
travel from anywhere within c to all item destinations within d.
To do this, we generate an anchor point p within c that both
(1) lies on the road network segment within c and (2) lies
as close as possible to the center of c. With these criteria, p
serves as an approximate average “starting point” for traveling
from c to d. We then calculate the shortest path distance
from p to all items contained in d on the road network (any
shortest path algorithm can be used). Finally, we average all
calculated shortest path distances from c to d. As a final step,
we normalize the average distance from c to d to fall within
the rating value range. Normalization is necessary as the rating
domain is usually small (e.g., zero to five), while distance is
measured in miles or kilometers and can have large values that
heavily influence Equation 5. We repeat this entire process for
each cell to all other cells to populate the entire penalty grid.
When new items are added to the system, their presence in

a cell d can alter the average distance value used in penalty
calculation for each source cell c. Thus, we recalculate penalty
scores in the penalty grid after N new items enter the system.
We assume spatial items are relatively static, e.g., restaurants
do not change location often. Thus, it is unlikely existing items
will change cell locations and in turn alter penalty scores.
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Fig. 6. Quality experiments for varying locality

V. SPATIAL USER RATINGS FOR

SPATIAL ITEMS

This section describes how LARS produces recommenda-
tions using spatial ratings for spatial items represented by the
tuple (user, ulocation, rating, item, ilocation). A salient feature
of LARS is that both the user partitioning and travel penalty
techniques can be used together with very little change to
produce recommendations using spatial user ratings for spatial
items. The data structures and maintenance techniques remain
exactly the same as discussed in Sections III and IV; only
the query processing framework requires a slight modification.
Query processing uses Algorithm 2 to produce recommen-
dations. However, the only difference is that the item-based
collaborative filtering prediction score P (u, i) used in the rec-
ommendation score calculation (Line 16 in Algorithm 2) is
generated using the (localized) collaborative filtering model
from the partial pyramid cell that contains the querying user,
instead of the system-wide collaborative filtering model as was
used in Section IV.

VI. EXPERIMENTS

This section provides experimental evaluation of LARS
based on an actual system implementation. We compare LARS
with the standard item-based collaborative filtering technique
along with several variations of LARS. Experiments are based
on three data sets: (1) Foursquare: a real data set consisting of
spatial user ratings for spatial items derived from Foursquare
user histories. (2) MovieLens: a real data set consisting of
spatial user ratings for non-spatial items taken from the
popular MovieLens recommender system [7]. The Foursquare
and MovieLens data are used to test recommendation quality.
(3) Synthetic: a synthetically generated data set consisting
spatial user ratings for spatial items for venues in the state of
Minnesota, USA; we use this data to test scalability and query
efficiency. Details of all data sets are found in Appendix B.
Unless mentioned otherwise, the default value ofM is 0.3,

k is 10, the number of pyramid levels is 8, and the influence
level is the lowest pyramid level. The rest of this section evalu-
ates LARS recommendation quality (Section VI-A), trade-offs
between storage and locality (Section VI-C), scalability (Sec-
tion VI-D), and query processing efficiency (Section VI-E).

A. Recommendation Quality for Varying Pyramid Levels

These experiments test the recommendation quality of
LARS against the standard (non-spatial) item-based collabora-
tive filtering method (denoted as CF) using both the Fourquare
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Fig. 7. Quality experiments for varying answer sizes

and MovieLens data. To test the effectiveness of our pro-
posed techniques, we test the quality of LARS with only
travel penalty enabled (abbr. LARS-T), LARS with only user
partitioning enabled (abbr. LARS-U), and LARS with both
techniques enabled (abbr. LARS). To measure quality, we build
each recommendation method using 80% of the ratings from
each data set. Each rating in the withheld 20% represents a
Foursquare venue or MovieLens movie a user is known to
like (i.e., rated highly). For each rating t in this 20%, we
request a set of k recommendations R by submitting the user
and ulocation associated with t. The quality measure is the
count of how many times R contains the item associated with
t (the higher the better). The rationale for this metric is that
since each withheld rating represents a real visit to a venue
(or movie a user liked), the technique that produces a large
number of answers that contain venues (or movies) a user is
known to like is considered of higher quality.

Figure 6(a) compares the quality of each technique for vary-
ing locality (i.e., different levels of the adaptive pyramid) using
the Foursquare data. Both CF and LARS-T do not use the
adaptive pyramid, thus have constant quality values. The gap
between CF and LARS-T highlights the benefit of using the
travel penalty technique that recommends items within a fea-
sible distance. Meanwhile, the quality of LARS and LARS-U
increases as more localized pyramid cells are used to pro-
duce recommendation, which verifies that user partitioning is
indeed beneficial and necessary for location-based ratings. Ul-
timately, LARS has superior performance due to the additional
use of travel penalty. While travel penalty produces moderate
quality gain, it also enables more efficient query processing,
which we observe later in Section VI-E).

Figure 6(b) compares the quality of LARS-U and CF for
varying locality using the MovieLens data (LARS and LARS-
T do not apply since movies are not spatial). While CF quality
is constant, the quality of LARS-U increases when it produces
movie recommendations from more localized pyramid cells.
This behavior further verifies that user partitioning is ben-
eficial in providing quality recommendations localized to a
querying user location, even when items are not spatial. Qual-
ity decreases (or levels off for MovieLens) for both LARS-U
and/or LARS for lower levels of the adaptive pyramid. This
is due to recommendation starvation, i.e., not having enough
ratings to produce meaningful recommendations.
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B. Recommendation Quality for Varying Values of k

These experiments test recommendation quality of LARS,
LARS-U, LARS-T, and CF for different values of k (i.e.,
recommendation answer sizes). We perform experiments using
both the Foursquare and MovieLens data. Our quality metric
is exactly the same as presented previously in Section VI-A.
Figure 7(a) depicts the effect of the recommendation list

size k on the quality of each technique using the Foursquare
data set. We report quality numbers using the pyramid height
of four (i.e., the level exhibiting the best quality from Sec-
tion VI-A in Figure 6(a)). For all sizes of k from one to ten,
LARS and LARS-U consistently exhibit better quality. In fact,
LARS is consistently twice as accurate as CF for all k. LARS-
T exhibits similar quality to CF for smaller k values, but does
better for k values of three and larger.
Figure 7(b) depicts the effect of the recommendation list

size k on the quality of LARS-U and CF using the MovieLens
data (LARS and LARS-T do not apply in this experiment
since movies are not spatial). This experiment was run using
a pyramid hight of seven (i.e., the level exhibiting the best
quality in Figure 6(b)). Again, LARS-U consistently exhibits
better quality than CF for sizes of K from one to ten. In fact,
the quality of CF increases by just a fraction as k increases.
Meanwhile, the quality of LARS-U increases by a factor of
seven as k increases from one to ten.

C. Storage Vs. Locality

Figure 8 depicts the impact of varying M on both the
storage and locality in LARS. We plot LARS-M=0 and LARS-
M=1 as constants to delineate the extreme values of M, i.e.,
M=0 mirrors traditional collaborative filtering, while M=1
forces LARS to employ a complete pyramid. Our metric for
locality is locality loss (defined in Section III-C1) when com-
pared to a complete pyramid (i.e.,M=1). LARS-M=0 requires
the lowest storage overhead, but exhibits the highest locality
loss, while LARS-M=1 exhibits no locality loss but requires
the most storage. For LARS, increasingM results in increased
storage overhead since LARS favors splitting, requiring the
maintenance of more pyramid cells each with its own col-
laborative filtering model. Meanwhile, increasing M results
in smaller locality loss as LARS merges less and maintains
more localized cells. The most drastic drop in locality loss
is between 0 and 0.3, which is why we chose M=0.3 as a
default.
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D. Scalability

Figure 9 depicts the storage and aggregate maintenance over-
head required for an increasing number of ratings. We again
plot LARS-M=0 and LARS-M=1 to indicate the extreme cases
for LARS. Figure 9(a) depicts the impact of increasing the
number of ratings from 10K to 500K on storage overhead.
LARS-M=0 requires the lowest amount of storage since it
only maintains a single collaborative filtering model. LARS-
M=1 requires the highest amount of storage since it requires
storage of a collaborative filtering model for all cells (in all
levels) of a complete pyramid. The storage requirement of
LARS is in between the two extremes since it merges cells to
save storage. Figure 9(b) depicts the cumulative computational
overhead necessary to maintain the adaptive pyramid initially
populated with 100K ratings, then updated with 200K ratings
(increments of 50K reported). The trend is similar to the stor-
age experiment, where LARS exhibits better performance than
LARS-M=1 due to merging. Though LARS-M=0 has the best
performance in terms of maintenance and storage overhead,
previous experiments show that it has unacceptable drawbacks
in quality/locality.

E. Query Processing Performance

Figure 10 depicts snapshot and continuous query process-
ing performance of LARS, LARS-U (LARS with only user
partitioning), LARS-T (LARS with only travel penalty), CF
(traditional collaborative filtering), and LARS-M=1 (LARS
with a complete pyramid).
Snapshot queries. Figure 10(a) gives the effect of various
number of ratings (10K to 500K) on the average snapshot
query performance averaged over 500 queries posed at random
locations. LARS and LARS-M=1 consistently outperform all
other techniques; LARS-M=1 is slightly better due to recom-
mendations always being produced from the smallest (i.e.,
most localized) CF models. The performance gap between
LARS and LARS-U (and CF and LARS-T) shows that em-
ploying the travel penalty technique with early termination
leads to better query response time. Similarly, the performance
gap between LARS and LARS-T shows that employing user
partitioning technique with its localized (i.e., smaller) collab-
orative filtering model also benefits query processing.
Continuous queries. Figure 10(b) provides the continuous
query processing performance of the LARS variants by report-
ing the aggregate response time of 500 continuous queries. A
continuous query is issued once by a user u to get an initial
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Fig. 10. Query Processing Performance.

answer, then the answer is continuously updated as u moves.
We report the aggregate response time when varying the travel
distance of u from 1 to 30 miles using a random walk over
the spatial area covered by the pyramid. CF has a constant
query response time for all travel distances, as it requires no
updates since only a single cell is present. However, since CF
is unaware of user location change, the consequence is poor
recommendation quality (per experiments from Section VI-A).
LARS-M=1 exhibits the worse performance, as it maintains all
cells on all levels and updates the continuous query whenever
the user crosses pyramid cell boundaries. LARS-U has a lower
response time than LARS-M=1 due to merging: when a cell is
not present on a given influence level, the query is transferred
to its next highest ancestor in the pyramid. Since cells higher
in the pyramid cover larger spatial regions, query updates
occur less often. LARS-T exhibits slightly higher query pro-
cessing overhead compared to LARS-U: even though LARS-
T employs the early termination algorithm, it uses a large
(system-wide) collaborative filtering model to (re)generate rec-
ommendations once users cross boundaries in the penalty grid.
LARS exhibits a better aggregate response time since it em-
ploys the early termination algorithm using a localized (i.e.,
smaller) collaborative filtering model to produce results while
also merging cells to reduce update frequency.

VII. RELATED WORK

Location-based services. Current location-based services em-
ploy two main methods to provide interesting destinations to
users. (1) KNN techniques [19] and variants (e.g., aggregate
KNN [21]) simply retrieve the k objects nearest to a user and
are completely removed from any notion of user personaliza-
tion. (2) Preference methods such as skylines [22] (and spatial
variants [23]) and location-based top-k methods [24] require
users to express explicit preference constraints. Conversely,
LARS is the first location-based service to consider implicit
preferences by using location-based ratings to help users
discover new and interesting items.
Recent research has proposed the problem of hyper-local

place ranking [25]. Given a user location and query string
(e.g., “French restaurant”), hyper-local ranking provides a list
of top-k points of interest influenced by previously logged
directional queries (e.g., map direction searches from point
A to point B). While similar in spirit to LARS, hyper-local
ranking is fundamentally different from our work as it does
not personalize answers to the querying user, i.e., two users
issuing the same search term from the same location will
receive exactly the same ranked answer set.

Traditional recommenders. A wide array of techniques are
capable of producing recommendations using non-spatial rat-
ings for non-spatial items represented as the triple (user, rat-
ing, item) (see [6] for a comprehensive survey). We refer to
these as “traditional” recommendation techniques. The closest
these approaches come to considering location is by incor-
porating contextual attributes into statistical recommendation
models (e.g., weather, traffic to a destination) [26]. However,
no traditional approach has studied explicit location-based rat-
ings as done in LARS. Some existing commercial applications
make cursory use of location when proposing interesting items
to users. For instance, Netflix [2] displays a “local favorites”
list containing popular movies for a user’s given city. However,
these movies are not personalized to each user (e.g., using
recommendation techniques); rather, this list is built using
aggregate rental data for a particular city [27]. LARS, on
the other hand, produces personalized recommendations influ-
enced by location-based ratings and a querying user location.
Location-aware recommenders. The CityVoyager system [28]
mines a user’s personal GPS trajectory data to determine her
preferred shopping sites, and provides recommendation based
on where the system predicts the user is likely to go in the
future. LARS, conversely, does not attempt to predict future
user movement, as it produces recommendations influenced by
user and/or item locations embedded in community ratings.
The spatial activity recommendation system [29] mines GPS

trajectory data with embedded user-provided tags in order to
detect interesting activities located in a city (e.g., art exhibits
and dining near downtown). It uses this data to answer two
query types: (a) given an activity type, return where in the city
this activity is happening, and (b) given an explicit spatial
region, provide the activities available in this region. This
is a vastly different problem than we study in this paper.
LARS does not mine activities from GPS data for use as
suggestions for a given spatial region. Rather, we apply LARS
to a more traditional recommendation problem that uses com-
munity opinion histories to produce recommendations.
Geo-measured friend-based collaborative filtering [30] pro-

duces recommendations by using only ratings that are from
a querying user’s social-network friends that live in the same
city. This technique only addresses user location embedded
in ratings. LARS, on the other hand, addresses three possible
types of location-based ratings. More importantly, LARS is a
complete system (not just a recommendation technique) that
employs efficiency and scalability techniques (e.g., merging,
splitting, early query termination) necessary for deployment in
actual large-scale applications.

VIII. CONCLUSION

LARS, our proposed location-aware recommender system,
tackles a problem untouched by traditional recommender sys-
tems by dealing with three types of location-based ratings:
spatial ratings for non-spatial items, non-spatial ratings for
spatial items, and spatial ratings for spatial items. LARS em-
ploys user partitioning and travel penalty techniques to sup-
port spatial ratings and spatial items, respectively. Both tech-
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niques can be applied separately or in concert to support the
various types of location-based ratings. Experimental analysis
using real and synthetic data sets show that LARS is efficient,
scalable, and provides better quality recommendations than
techniques used in traditional recommender systems.
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APPENDIX

A. Foursquare Description

Foursquare [4] is a mobile location-based social network
application. Users are associated with a home city, and alert
friends when visiting a venue (e.g., restaurant) by “checking-
in” on their mobile phones. During a “check-in”, users can
also leave “tips”, which are free text notes describing what
that they liked about the venue. Any other user can add the
“tip” to her “to-do list” if interested in visiting the venue.
Once a user visits a venue in the “to-do list” , she marks it
as “done”. Also, users who check into a venue the most are
considered the “mayor” of that venue.

B. Experimental Data Details

1) Foursquare Data: We crawled Foursquare and collected
data for 1,010,192 users and 642,990 venues across the United
States. Foursquare does not publish each “check-in” for a user,
however, we were able to collect the following pieces of data:
(1) user tips for a venue, (2) the venues for which the user is
the mayor, and (3) the completed to-do list items for a user.
In addition, we extracted each user’s friend list.
Extracting location-based ratings. To extract spatial user

ratings for spatial items from the Foursquare data (i.e., the
five-tuple (user, ulocation, rating, item, ilocation)), we map
each user visit to a single location-based rating. The user and
item attributes are represented by the unique Foursquare user
and venue identifier, respectively. We employ the user’s home
city in Foursquare as the ulocation attribute. Meanwhile, the
ilocation attribute is the item’s inherent location. We use a
numeric rating value range of [1, 3], translated as follows:
(a) 3 represents the user is the “mayor” of the venue, (b) 2
represents that the user left a “tip” at the venue, and (c) 1
represents the user visited the venue as a completed “to-do”
list item. Using this scheme, a user may have multiple ratings
for a venue, in this case we use the highest rating value.
Data properties. Our experimental data consisted of 22,390

location-based ratings for 4K users for 2K venues all from
the state of Minnesota, USA. We used this reduced data set
in order to focus our quality experiments on a dense rating
sample. Use of dense ratings data has been shown to be a very
important factor when testing and comparing recommendation
quality [14], since use of sparse data (i.e., having users or
items with very few ratings) tends to cause inaccuracies in
recommendation techniques.
2) MovieLens Data: The MovieLens data used in our ex-

periments was real movie rating data taken from the popular
MovieLens recommendation system at the University of Min-
nesota [7]. This data consisted of 87,025 ratings for 1,668
movies from 814 users. Each rating was associated with the
zip code of the user who rated the movie, thus giving us a
real data set of spatial user ratings for non-spatial items.
3) Synthetic Data: The synthetic data set we use in our ex-

periments was generated to contain 2000 users and 1000 items,
and 500,000 ratings. Users and items locations are randomly
generated over the state of Minnesota, USA. Users’ ratings to
items are assigned random values between zero and five.
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