A Framework for Collaborative, Content-Based

and Demographic Filtering

21.04.21

Byeong-Hyun Ko

Memory Based Collaborative Filtering

The Syskill and Webert interface

Contents

	Karen	Lynn	Chris	Mike	Jill
Kitima	_	+	+	+	_
Marco Polo	+	+	+	+	+
Spiga	+	_	+	_	+
Thai Touch	_	+	_	+	_
Dolce	+	_	+	_	?

Table 1. Ratings of five users of five restaurants.

- 44 Users rate restaurant with that descriptions
- Like or Not (Thumb up/down)

User Based CF

 Predict that a user might like on based other users who have similar taste with that of the target user

	Karen	Lynn	Chris	Mike	Jill
Kitima	_	+	+	+	_
Marco Polo	+	+	+	+	+
Spiga	+	_	+	_	+
Thai Touch	_	+	_	+	_
Dolce	+	_	+	_	?

Table 1. Ratings of five users of five restaurants.

• Correlation(similarity) method

$$r(x, y) = \frac{\sum_{d \in documents} (R_{x,d} - \bar{R}_x) (R_{y,d} - \bar{R}_y)}{\sqrt{\sum_{d \in documents} (R_{x,d} - \bar{R}_x)^2 \sum_{d \in documents} (R_{y,d} - \bar{R}_y)^2}}$$

User Based CF (con'd)

	Karen	Lynn	Chris	Mike	Jill	
Kitima	-1	1	1	1	-1	
Macro Polo	1	1	1	1	1	
Spiga	1	-1	1	-1	1	
Thai Touch	-1	1	-1	1	-1	

• Treat Pos(+) to 1, Neg(-) to -1

	Karen	Lynn	Chris	Mike	Jill
Karen	1.00000	-0.577350	0.577350	-0.577350	1.00000
Lynn	-0.57735	1.000000	-0.333333	1.000000	-0.57735
Chris	0.57735	-0.333333	1.000000	-0.333333	0.57735
Mike	-0.57735	1.000000	-0.333333	1.000000	-0.57735
Jill	1.00000	-0.577350	0.577350	-0.577350	1.00000

• Make User-User (Pearson) Correlation matrix (similarity matrix)

							Karen	Lynn	Chris	Mike	Jill
	Karen	Lynn	Chris	Mike	Jill	Kitima	-1.0	1.0	1.0	1.0	-1.0
Kitima	-1	1	1	1	-1	Macro Polo	1.0	1.0	1.0	1.0	1.0
Macro Polo	1	1	1	1	1	Spiga	1.0	-1.0	1.0	-1.0	1.0
Spiga	1	-1	1	-1	1	Thai Touch	-1.0	1.0	-1.0	1.0	-1.0
Thai Touch	-1	1	-1	1	-1	Dolce	1.0	-1.0	1.0	-1.0	NaN

	Karen	Lynn	Chris	Mike	Jill
Karen	1.00000	-0.577350	0.577350	-0.577350	1.00000
Lynn	-0.57735	1.000000	-0.333333	1.000000	-0.57735
Chris	0.57735	-0.333333	1.000000	-0.333333	0.57735
Mike	-0.57735	1.000000	-0.333333	1.000000	-0.57735
Jill	1.00000	-0.577350	0.577350	-0.577350	1.00000

- Predict with avg weighted sum
 - (1+0.577+0.577+0.577)/4 = 0.682

Contents Based CF

- Recommend using item's descriptions (domain feature)
 - Feature extraction (contents analyze) is needed
 - Which words can **represent item itself**
 - Syskill and Webert system selects 128 most informative words
 - Using expected informative gain
 - S : documents; item descriptions

 $E(W, S) = I(S) - [p(W = present)I(S_{W=present}) + p(W = absent)I(S_{W=absent})]$ $I(S) = \sum_{c} -p(S_{c}) \log_{2}(p(S_{c}))$

- Learning User Profile
 - TF-IDF, Bayesian classifier -> require prespecifying the number of terms(samples) used in the profile
 - Using Winnow algorithm

	Noodle	Shrimp	Basil	Exotic	Salmon	Jill
Kitima	Y	Y	Y	Y	Y	_
Marco Polo		Y	Y			+
Spiga	Y		Y			+
Thai Touch	Y	Y		Y		_
Dolce		Y	Y		Y	?

Table 2. The words contained in the description of 5 restaurants together with the ratings of a user for those restaurants.

- Informative words ; item feature ; represents from item descriptions
 - 10 words example

	Doodle	Shrimp	Basil	Exotic	Salmon	appetizer	milk	sirloin	private	farm
Kitima	1	1	1	1	0	1	1	1	0	0
Macro Polo	1	1	1	0	0	0	1	0	1	1
Spiga	1	0	0	1	1	1	0	1	1	1
Thai Touch	1	1	1	1	1	1	0	0	0	0
Dolce	0	1	0	1	0	1	1	1	0	1

- Winnow algorithm
 - Proposed by Littlestone and Warmuth ;1994
 - Work like *perceptron*
 - Learning weight(w) with iteration
 - Threshold : decision value ; |N(x)|/2
 - X : input feature by item (each item has +/- ratings)

$$\sum w_i x_i > \tau$$

- Iteration rule
 - Weights are initialized to 1
 - Finding the weighted sum
 - Above threshold && rating of X is '-' : W associate with X is divided by 2
 - Below threshold && rating of X is '+' : W associate with X is multiplied by 2

• Winnow learning example

	Karen	Lynn	Chris	Mike	Jill
Kitima	-1	1	1	1	-1
Macro Polo	1	1	1	1	1
Spiga	1	-1	1	-1	1
Thai Touch	-1	1	-1	1	-1

	Noodle	Shrimp	Basil	Exotic	Salmon	appetizer	milk	sirloin	private	farm
Kitima	1	1	1	1	0	1	1	1	0	0
Macro Polo	1	1	1	0	0	0	1	0	1	1
Spiga	1	0	0	1	1	1	0	1	1	1
Thai Touch	1	1	1	1	1	1	0	0	0	0
Dolce	0	1	0	1	0	1	1	1	0	1
weights	1	1	1	1	1	1	1	1	1	1

• Winnow learning example

12

1

Olevia.

NALL-

1211

```
Threshold : 5
Initial Weights : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Weighted Sum : 7
Pos/Neg : -1
Word Yec X : [1, 1, 1, 1, 0, 1, 1, 1, 0, 0]
Old Weights : [1, 1, 1, 1, 1, 1, 1, 1, 1]
New Weights : [0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1, 1]
```

W	innow le	earning	exam	ple				Karen	Lynn	Chris	Mike	Jill
				10.0			Kitima	-1.0	1.0	1.0	1.0	-1.0
						Mac	ro Polo	1.0	1.0	1.0	1.0	1.0
		`		-			Spiga	1.0	-1.0	1.0	-1.0	1.0
	Z	$w_i x$	i >	ι		Tha	i Touch	-1.0	1.0	-1.0	1.0	-1.0
						Dolce	1.0	-1.0	1.0	-1.0	NaN	
	Spiga	1	0	0	1	1		1	0	1	1	1
	Thai Touch	1	1	1	1	1		1	0	0	0	0
		Weighted Sum : 4.0 Pos/Neg : 1 Word Vec X : [1, 1, 1, 0, 0, 0, 1, 0, 1, 1] Old Weights : [0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1, 1] New Weights : [1.0, 1.0, 1.0, 0.5, 1, 0.5, 1.0, 0.5, 2, 2]										
		Weighted Pos Word Vec Old Weig New Weig	Sum: /Neg: X: hts: hts:	7.5 1 1, 0, 1.0, 1 1.0, 1	0, 1, 1 I.0, 1.0 I.0, 1.0	, 1, 0, , 0.5, , 0.5,	1, 1, 1, 0.5 1, 0.5	1] , 1.0, , 1.0,	0.5, 0.5,	2, 2] 2, 2]		

• W	innow learr	ning exa	ampl	е			Karen	Lynn	Chris	Mike	Jill
						Kitima	-1.0	1.0	1.0	1.0	-1.0
						Macro Polo	1.0	1.0	1.0	1.0	1.0
	$\mathbf{\nabla}$		-		Spiga	1.0	-1.0	1.0			
		$w_i x_i$	> l		Thai Touch	-1.0	1.0	-1.0	1.0	-1.0	
						Dolce	1.0	-1.0	1.0	-1.0	NaN
	Thai Touch	1	1	1	1	1	1	0	0	0	0
	Dolce	0	1	0	1	0	1	1	1	0	1
	Weight P Word V Old We New We Weight P Word V Old We New We	ed Sum : os/Neg : ights : ights : ights : os/Neg : os/Neg : ights : ights :	5.0 -1 [1, 1, [1.0, [0.5, 1 [0, 1, [0.5, [0.5,	1, 1, 1.0, 1 0.5, 0 0, 1, 0.5, 0 1.0, 0	1, 1, (.0, 0.5, .5, 0.29 0, 1, 1 .5, 0.29	0, 0, 0, 0, 0] , 1, 0.5, 1 5, 0.5, 0.2 , 1, 0, 1] 5, 0.5, 0.2 , 0.5, 0.5,	.0, 0.5 5, 1.0, 5, 1.0, 2.0, 1	i, 2, 2 0.5, 0.5, .0, 2,	2] 2, 2] 2, 2] 2, 2]		

• Winnow predict example

	Noodle	Shrimp	Basil	Exotic	Salmon	appetizer	milk	sirloin	private	farm
Kitima	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0	0
Macro Polo	1.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	1	1
Spiga	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	1	1
Thai Touch	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0	0
Dolce	0.0	1.0	0.0	1.0	0.0	1.0	1.0	1.0	0	1
WEIGHTS	0.5	1.0	0.5	0.5	0.5	0.5	2.0	1.0	2	4
Milano	1.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0	1

- Weighted sum score : 6.0
- Larger than threshold : positive

 $\sum w_i x_i > \tau$

Demographic Based Recommender

- Using demographic information
 - Extract data from user's home-page with text classification
 - Trade-off between the quality of the demographic information obtained and performance
 - On average, 57.5% of the restaurants in the top three (winnow)

	Gender	Age	Area code	Education	Employed	Dolce
Karen	F	15	714	HS	F	+
Lynn	F	17	714	HS	F	_
Chris	F	27	714	С	Т	+
Mike	Μ	40	714	С	Т	_
Jill	F	10	714	E	F	?

Collaborative via content

- Limitation of collaborative methods (user based)
 - Meaningful when use many rating data (cold-start problems)
 - Sparse data in real world
 - Using contents-profile as rating matrix (using pearson correlation)
 - On average, 70.1% of the restaurants in the top three

	Noodle	Shrimp	Basil	Exotic	Salmon	Dolce
Karen	2.5	0	0.2	0	0	+
Lynn	1.1	0	1.1	1.5	0	
Chris	1.5	0	3.5	1.5	0.5	+
Mike	1.1	1.1	2.1	2.0	2.5	-
Jill	1.1	2.2	0	0	3.5	?

Table 4. Content-based profiles of five users plus their ratings for a particular restaurant

Combining Multiple Profiles

- Compare performance in difference environments
 - Training with data only in "Southern Orange County"
 - Test with data from **mixture** "Southern/Northern" area
 - Content-based : insensitive to the distribution
 - Few words referred to specific cities or geographic regions
 - Collaborative : poor at sparse situations
 - Performance is increased when ratings in common is raised
 - Collaboration via content : higher performance than others
 - Calc similarity with distribution insensitive content-based data
 - Combining all method
 - Sum of rank in each methods (highest to lowest : 5 to 1)
 - On average, 72.1% of the restaurants in the top three

Conclusion

Restaurants	(People		(Content		: Contents based
	Karen	Lynn	Jill	Noodle	Shrimp	Basil	: Demographic b
Kitima	-	+	_	Y	Y	Y	: Combining all r
Marco Polo	+	+	+		Y	Y	
Dolce	+	_	?		Y	Y	
Gender	F	F	F				
Age	15	17	10				
Area code	714	714	714				
	De	mographic	s)

- Methods assist the user in **finding relevant information** (from data)
 - Each algorithms use different forms of information
 - Hybrid approaches use more of the available information for better results
 - Future works
 - Latent semantic indexing (using SVD for sparse problem)
 - Using continuous values