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Introduction to GAN (Generative Adversarial Nets)

* Problem Definition in Data Generation

* Traditional objective: maximum likelihood estimation (MLE)

max ﬁ Z [log g ()] ~ max Eqp(z)l0g go ()]
xeD

D = {;1;} : Dataset
o (;;(;) : Model
p(:L‘) : True Distribution (the data we want)

* Check whether a true data is with a high mass density of the learned model
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Introduction to GAN (2)

* Inconsistency of Evaluation and Use

mgx Ea:wp(x) [log do (CC)] mga’x Eﬂ?"-’% () [logp(a:)]
Training/evaluation Use

e Check whether a model-

* Check whether a true data is generated data is considered as

with a high mass density of true as possible

the learned mode * More straightforward but it is

hard or impossible to directly

calculate p ( x)

* What if we build a discriminator to judge whether a data instance is true

or fake (artificially generated)?
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Introduction to GAN (3)

* Generator Network
r = G(z;0)

e Popular implementation: multi-layer perceptron

e Discriminator Network
P(true|x) = D(x; @)

e Can be implemented by any neural networks with a probabilistic prediction

* GAN Objective Function

E:cwpdam(m) [log D(:B)] + ]E'ZN'Pz(Z) [log(]- = D(G(z)))]

GAN IR IRGAN Experiments Conclusions



X Introduction to GAN (4)

* A Minimax Game

Real World .—v
Generator e—»

min max J(G, D) max J(G, D)
G D D

__________

e Discriminator tries to correctly distinguish the true data and the fake
model-generated data
* Generator tries to generate high-quality data to fool discriminator

e Untill D cannot distinguish the true and generated data
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Information Retrieval (1)

N
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Information Retrieval (2)

* The classic school: Generative Retrieval

® @® Non-relevant e D-> Q' Q->D

® _* ® * Assume there is an underlying stochastic
@ A® ,
e _ generative process between documents and
Relevant information needs

e The modern school: Discriminative Model

o @® Non-relevant e Q+D->R

* Discriminative models learned from labeled

relevant judgements or their proxies such as clicks

Relevant or ratings
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Information Retrieval to IRGAN

Generative models of IR Discriminative models of IR

* Pros: theoretically sound * Pros: learn a retrieval
and very successful in ranking function implicitly
modelling features from labeled data
* Cons: * Cons: lack a principled way
» Difficult in leveraging of
relevancy signals from * Obtaining useful features,
largely observable data, * Gathering helpful signals from

e.g. links, clicks the'massive unlabeled S:Ia_ta
i . available, e.g., text statistics,
* TVP'Ca"Y not trainable the collection distribution

* If we Mix both advantage
e Generative models : Learn from discriminative model -> Trainable !

e Discriminative models : Obtain needed training data automatically
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~ IRGAN (1)

Generative Discriminative
* |R + GAN

Approximate the true  Distinguish between
relevance distribution  relevant documents
(select / generate ) or not

Relevant Docs

________

000 E
Ptrue(d|g, ) > Real World ::: i
: : : i_’e Discriminator
— Generator : : : i f¢(Qa d)
po(dlg,T) 000

* True relevance distribution : pirue(d|g, 7)depicts the user’s relevance

preference distribution over the candidate documents with respect to

query
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IRGAN (2)

* |IRGAN Objective

N
JG*.D* _ mgin max Z (Ed,\,ptme(dmmﬂ log |D(d|gx)
n=1

=" 000
ptrue(d|Qa T)"’ ReaIWorId; i ::: !
::: i—’ D Discrimicgator —
— Generator 000! folq,d)
p@(d|q,’l°) \_._.__.-,l

* Original GAN : Egp, (@) log D(x)] + E,p_ (2 [log(1 — D(G(2)))]
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IRGAN Extension to Pairwise

* IR problems, it is common that the labelled training data available for
learning to rank are not a set of relevant documents

* In the set of ordered document pairs for each query
e Capture relative preference in pair > Absolute relevance judgements
* Relevance scales > Binary relevance

N
&b s
J* = ; (Eo~ptme<o|qn> [log D(olgn)] +

1Eo’~p9(o’|qn) [log(1 - D(0’|Qn))] )
Rp = {{d;,dj)|d; > dj}

o= {(dy,dv)
o = (d;,d{,)
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IRGAN - Training

N
D"
J - mell’l mgx r; (EdNPtrue(dlqna r) [logD(qun)] T

Ed~py(d|g,,r) [1og(1 — D(d|gn))] ) :

e Generator Network

N
6" =argmax ) (Ba-pyyetalan.n) (108U (d.0n))] +

n=1

Bi-por (dlgnr) [0801 — o (fp(@d an))] )

* Discriminator Network

N
o I — (Ed~pme(d| . [ogo(fyd. gn))] + N
0 r; t qn.r [ ] = argmgxz EdNPe(d|(1n,r) [log(l + exp(f¢(d,qn)))]
n=1

Ed~po(dignr) |108(1 ~ o(f3(d.qn)))] ) denoted as /9 (qn)
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IRGAN - Training (2)

Observed positive samples . .
Unobserved positive samples I
Unobserved negative samples .

. Generated unobserved samples ‘ -
Upward force from REINFORCE ‘ ‘
Downward force from knocker ‘

The underlying correlation ‘ ‘ ’ ‘

between positive samples

- — - Discriminator

‘ Decision Boundary

> Q@000

Figure 1: An illustration of IRGAN training.

Sample -> Soup
Discriminator Decision Boundary -> Surface of water
Relevant, Correlation -> floatable soup is fixed in situation (by density)

Density of Water -> Adjust by Generative & Discriminate term
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IRGAN - Experiment (Web-1)

e Scoring Functions : RankNet — 2 layer NN ;

s(g.d) = wy tanh(Wixg 4 + b1) + wo

e Dataset : MQ-2008 (Millionquery Track in
LETOR 4.0)

e Semi-supervised learning: unlabeled

guery document pairs
* Task : Rank the candidate documents for
each query
* Query : 46-dim vec

* Relevance Level :-1,0, 1, 2

| P@3 | P@5 | P@10 | MAP
MLE 0.1556 0.1295 0.1029 0.1604
RankNet [3] 0.1619 0.1219 0.1010 0.1517
LambdaRank [5] 0.1651 0.1352 0.1076 0.1658
LambdaMART [4] 0.1368 0.1026 0.0846 0.1288
IRGAN-pointwise 0.1714 0.1657 0.1257 0.1915
IRGAN-pairwise 0.2000 0.1676 0.1248 0.1816
Impv-pointwise 3.82% 22.56%" 16.82%" 15.50%"
Impv-pairwise 21.14%" 23.96%" 15.98% 9.53%

| NDCG@3 | NDCG@5 | NDCG@10 | MRR
MLE 0.1893 0.1854 0.2054 0.3194
RankNet [3] 0.1801 0.1709 0.1943 0.3062
LambdaRank [5] 0.1926 0.1920 0.2093 0.3242
LambdaMART [4] 0.1573 0.1456 0.1627 0.2696
IRGAN-pointwise 0.2065 0.2225 0.2483 0.3508
IRGAN-pairwise 0.2148 0.2154 0.2380 0.3322
Impv-pointwise 7.22% 15.89% 18.63% 8.20%
Impv-pairwise 11.53% 12.19% 13.71% 2.47%
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\ IRGAN - Experiment (Web-2)

* Performance is relied on training

epoch

* Typically, when one player (G or D)
starts to outperforms the baseline
discriminative model, the other

player (D or G) would get worse than
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IRGAN - Experiment (Web-3)

NN D vs.

Lin D vs.

NN D vs

Lin D vs

. LinG

.LinG

Gene

rator of IRGAN-pointwise

NN G

—

!

NN D vs

4 LinDwvs
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Discriminato
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o
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* |IRGAN-pointwise : NN implemented generator works be better than its linear version

NN implemented discriminator may not offer a good guidance if the generator has lower

model complexity (i.e. linear).

* IRGAN-pairwise : NN implemented discriminator outperforms its linear version

GAN

Prediction part should be implemented with a capacity at least as high as its opponent.

IRGAN

Experiments

Conclusions
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IRGAN - Experiment (RS)

* Scoring Functions : s(u,i) = b; + v,

* Dataset :

T‘Ul‘

* Movielens: 943 users, 1.7k items, 100k

* Netflix: 480k users, 17k items, 100M

* Task : Top-N item recommendation with

implicit feedback data

Table 3: Item recommendation results (Movielens).

| P@3 | P@5 | P@10 | MAP
MLE 0.3369 03013 0.2559 0.2005
BPR [34] 0.3289 0.3044 0.2656 0.2009
LambdaFM [46] 0.3845 0.3474 0.2967 0.2222
IRGAN-pointwise |  0.4072 0.3750 0.3140 0.2418
Impv-pointwise |  5.90%" 7.94%" 5.83%* | 8.82%"

| NDCG@3 | NDCG@5 | NDCG@10 | MRR

MLE 0.3461 0.3236 0.3017 0.5264
BPR [34] 0.3410 0.3245 0.3076 0.5290
LambdaFM [46] 0.3986 0.3749 0.3518 0.5797
IRGAN-pointwise |  0.4222 0.4009 0.3723 0.6082
Impv-pointwise | 5.92%° | 6.94%" | 583%° | 4.92%"

Table 4: Item recommendation results (Netflix).

| P@3 | P@5 | P@10 | MAP
MLE 0.2941 0.2945 0.2777 0.0957
BPR [34] 0.3040 0.2933 0.2774 0.0935
LambdaFM [46] 0.3901 0.3790 0.3489 0.1672
IRGAN-pointwise |  0.4456 0.4335 0.3923 0.1720
Impv-pointwise | 14.23%" 14.38%* 12.44%* | 2.87%"

| NDCG@3 | NDCG@5 | NDCG@10 | MRR

MLE 0.3032 0.3011 0.2878 0.5085
BPR [34] 0.3077 0.2993 0.2866 0.5040
LambdaFM [46] 0.3942 0.3854 0.3624 0.5857
IRGAN-pointwise |  0.4498 0.4404 0.4097 0.6371
Impv-pointwise | 14.10%" 14.27%* 13.05%* 8.78%"

GAN

IRGAN

Experiments

Conclusions
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 IRGAN - Experiment (QnA)

. . Uq
* Scoring Functions : s(g,a) = cos(vg,va) = ool Toul
gl 1Pa

* Use convolutional layer on embedding matrix

of a question sentence or an answer
Table 5: The Precision@1 of InsuranceQA.

| test-1 | test-2

sentence (with MaxPooling)

QA-CNN [9] 0.6133 | 0.5689
LambdaCNN [9, 51] | 0.6294 | 0.6006
. .
Dataset : InsuranceQA Dataset IRGAN-pairwise sl i
e 12k question answer pairs Impv-pairwise | 2.38%* | 1.75%

* Two test sets with 1.8k pairs

0.65

0.64

* rank top-1 answer for each question

~
@®) 0.63
S
z, 0.62
C o
* Lower precision in Generator . - ‘ & 0%
0.50H — Generator of IRGAN ; 0.60 : — Discriminator of IRGAN [
H . H ' - - LambdaCNN - - LambdaCNN
e Sparsity : Each Question usually has only one oasi=s 1’: :.5 =i L1 gl P L 2,03 2.533.0 =
Generator Training Epoch Discriminator Training Epoch

correct answer and many weaker negative

Figure 8: The experimental results in QA task.
answers e P Q
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| Conclusion

* Advantage of Adversarial Model
* Generator is guided by the signals obtained from the discriminative retrieval
mode
e Discriminator could be enhanced to rank top documents better via strategic
negative sampling from the generator

* IRGAN-> flexible and principled training environment

e Future Work

* Generalized word token -> applying language model
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