

## Attention-Based Transactional Context Embedding for Next-Item Recommendation (AAAI 2018)

#### Jongjin Kim Data Mining Lab Dept. of CSE Seoul National University

Jongjin Kim (SNU)





- RSs play an important role in real-world business.
- Users prefer items that are novel and different from that already in hand, but previous RSs tend to repeat items that are similar to already chosen.
- Transaction based RSs are quite different from traditional RSs built on user preferences and item properties.
- Attention-Based Transaction Approach can solve above issue.



## Outline

## Problem Definition

- Proposed Method
- Experiments
- Conclusion





#### • What is context?



- Traditional RSs would recommend salad since it is more similar with fruits.
- However this customer actually pick up bread to eat with milk while shopping.



# **Problem Definition**

### Given

- Set of items  $I = \{i_1 ... i_{|I|}\}$
- Set of transactions  $T = \{t_1 \dots t_{|T|}\}, (t = \{i_1 \dots i_{|t|}\})$
- Context  $c = t \setminus i_s$

#### Generate

 $\Box$  probability distribution  $P(i_s|c)$ 



# Challenges

- Context is hard to learn in previous approaches.
- Markov Chain
   Only captures the first-order transition
- Matrix Factorization

   Easily suffers from sparsity issues
- RNN
  - Too high computational cost for large data



# Outline

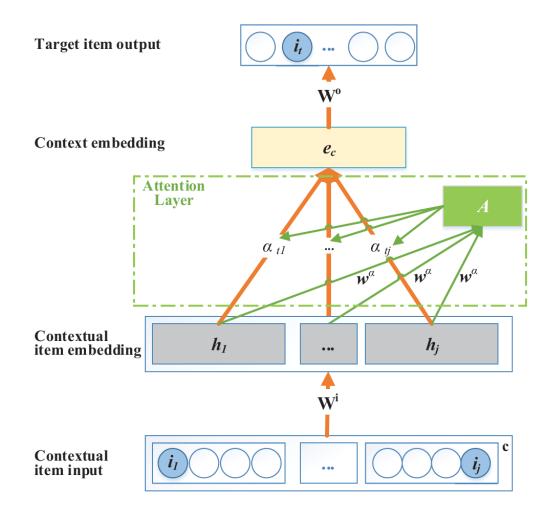
## Problem Definition

## Proposed Method

- Experiments
- Conclusion



# **Proposed Method**



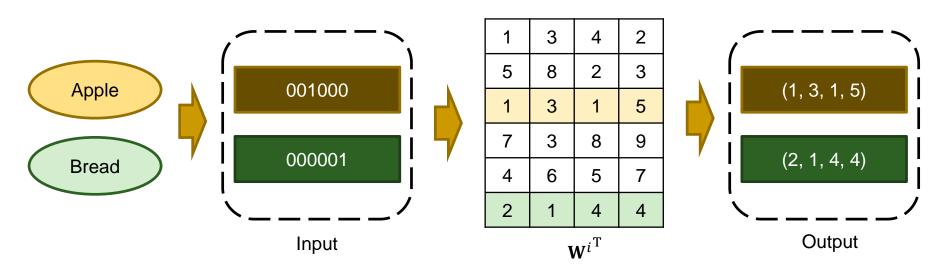


# **Input Layer**

- Input: set of one-hot encoded items
- Output: set of contextual item embeddings

 $\mathbf{h}_j = \mathbf{W}_{:,j}^i \qquad \mathbf{W}^i \in \mathbb{R}^{K \times |I|}$ 

• W<sup>i</sup> performs as an embedding lookup table.



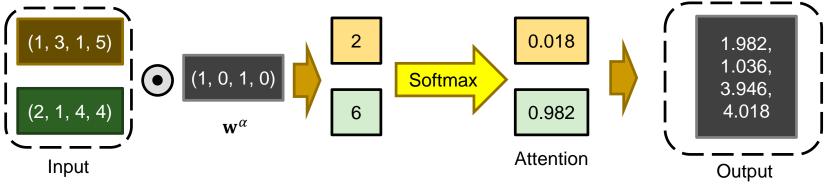


# **Context Layer (Attention)**

- Input: set of contextual embeddings
- Output: context vector

$$\mathbf{e}_{c} = \sum_{i_{j} \in c} \alpha_{tj} \mathbf{h}_{j} \qquad \alpha_{tj} = \frac{exp(e(\mathbf{h}_{j}))}{\sum_{s \in \mathbf{c}_{t}} exp(e(\mathbf{h}_{s}))} \qquad e(\mathbf{h}_{j}) = \mathbf{w}^{\alpha} \mathbf{h}_{j}^{T}$$

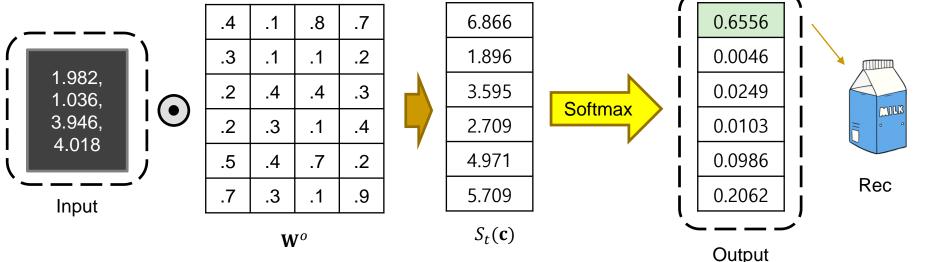
 Attention vector indicates which vector should be emphasize to describe context.



# **Output Layer**

- Input: context vector
- Output: probability distribution over all items

$$\mathbf{W}^{o} \in \mathbb{R}^{|I| \times K} \quad S_{t}(\mathbf{c}) = \mathbf{W}^{o}_{t,:} \mathbf{e}_{\mathbf{c}} \quad P_{\Theta}(i_{t} | \mathbf{c}) = \frac{exp(S_{t}(\mathbf{c}))}{Z(\mathbf{c})} \quad Z(\mathbf{c}) = \sum_{i \in I} exp(S_{i}(\mathbf{c}))$$





# Learning

- Given dataset  $D = \{ \langle \mathbf{c}, i_c \rangle \}$
- joint probability distribution  $P_{\Theta}(D) \propto \prod_{d \in D} P_{\Theta}(i_c | \mathbf{c})$

• => Maximize 
$$L_{\Theta} = \sum_{d \in D} log P_{\Theta}(i_c | \mathbf{c}) = \sum_{d \in D} S_{i_c}(\mathbf{c}) - log Z(\mathbf{c})$$
  
high computational cost

Use NCE(Noise Contrastive Estimation) to drop Z term.



# Outline

# Problem Definition Proposed Method Experiments Conclusion



# **Experimental Setup**

| Table 1. Statistics of experimental datasets |          |         |  |  |
|----------------------------------------------|----------|---------|--|--|
| Statistics                                   | IJCAI-15 | Tafang  |  |  |
| #Transactions                                | 144,936  | 19,538  |  |  |
| #Items                                       | 27,863   | 5,263   |  |  |
| Avg. Transaction Length                      | 2.91     | 7.41    |  |  |
| <b>#Training Transactions</b>                | 141,840  | 18,840  |  |  |
| <b>#</b> Training Instances                  | 412,679  | 141,768 |  |  |
| <b>#</b> Testing Transactions                | 3,096    | 698     |  |  |
| <b>#</b> Testing Instances                   | 9,030    | 3,150   |  |  |

 Table 1: Statistics of experimental datasets

#### test set: 20% of last 30 days' data

evaluation metric: Recall@K, MRR



# **Comparison Methods**

#### PBRS

Typical pattern-based recommender system

## FPMC

Matrix factorization + first-order Markov chain

#### PRME

- Personalized ranking metric embedding method
- Markov chain framework



# **Comparison Methods**

#### GRU4Rec

RNN-based approach

### TEM

- ATEM without attention
- Attention mechanism is replaced with distancebased exponential decay.



## **Results**

| Table 2: Accuracy comparisons on IJCAI-15 |                      |                         | Table 3: Accuracy comparisons on Tafang |             |                         |                      |                      |
|-------------------------------------------|----------------------|-------------------------|-----------------------------------------|-------------|-------------------------|----------------------|----------------------|
| Model                                     | <b>REC@10</b>        | <b>REC@50</b>           | MRR                                     | Model       | <b>REC@10</b>           | <b>REC@50</b>        | MRR                  |
| PBRS                                      | 0.0780               | 0.0998                  | 0.0245                                  | PBRS        | 0.0307                  | 0.0307               | 0.0133               |
| FPMC                                      | 0.0211               | 0.0602                  | 0.0232                                  | FPMC        | 0.0191                  | 0.0263               | 0.0190               |
| PRME                                      | 0.0555               | 0.0612                  | 0.0405                                  | PRME        | 0.0212                  | 0.0305               | 0.0102               |
| GRU4Rec                                   | 0.2283               | 0.3021                  | 0.1586                                  | GRU4Rec     | 0.0628                  | 0.0907               | 0.0271               |
| ATEM<br>TEM                               | <b>0.3542</b> 0.3177 | <b>0.5134</b><br>0.3796 | <b>0.2041</b><br>0.1918                 | ATEM<br>TEM | <b>0.1089</b><br>0.0789 | <b>0.2016</b> 0.1716 | <b>0.0347</b> 0.0231 |



# Outline

- Problem Definition
- Proposed Method
- Experiments

## Conclusion





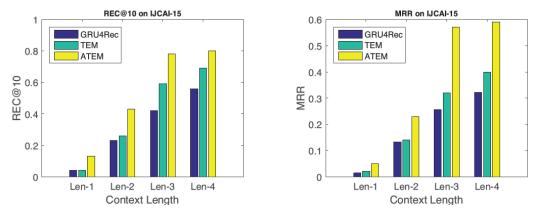
- ATEM clearly achieves the best results on both dataset.
- The highest MRR proves that ATEM can effectively put the users' desired items in the front of the recommendation list.
  - ATEM builds context from whole items while others only use first-order dependency.
  - Attention helps to find important item a lot.



## **Discussions**

ATEM has a very shallow and concise structure

- Easy to train.
- Efficient to recompute ranking scores while context keep updating.
- ATEM has more resistant for long context.





## **Discussions**

#### • ATEM has more resistant for order shuffling.

| Model                | <b>REC@10</b>              | <b>REC@50</b>              | MRR                        |
|----------------------|----------------------------|----------------------------|----------------------------|
| PBRS<br>FPMC<br>PRME | 0.0500<br>0.0151<br>0.0346 | 0.0559<br>0.0412<br>0.0389 | 0.0185<br>0.0183<br>0.0351 |
| GRU4Rec              | 0.1636                     | 0.2121                     | 0.1022                     |
| ATEM<br>TEM          | <b>0.3423</b> 0.2660       | <b>0.4981</b> 0.3012       | <b>0.1960</b><br>0.1431    |

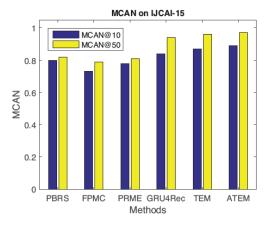
 Table 4: Accuracy on disordered IJCAI-15

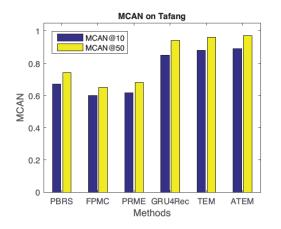


## **Discussions**

- ATEM can generate novel recommendation list.
  - Novelty Metric MCAN@K











- ATEM is accurate, novel, efficient model for transactional context recommendation.
- Experiments show ATEM significantly beats other SotA models in real world datasets.
- We will explore the application of ATEM to other problems such as the author-topic relation learning.



# Thank you !

Jongjin Kim (SNU)