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Overview

■ RSs play an important role in real-world business.

■ Users prefer items that are novel and different from that 

already in hand, but previous RSs tend to repeat items that 

are similar to already chosen.

■ Transaction based RSs are quite different from traditional 

RSs built on user preferences and item properties.

■ Attention-Based Transaction Approach can solve above 

issue.
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Context

■ What is context?

■ Traditional RSs would recommend salad 

since it is more similar with fruits.

■ However this customer actually pick up 

bread to eat with milk while shopping. 

milk
apple

orange
salad bread

?
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Problem Definition

■ Given
■ Set of items 𝐼 = {𝑖1… 𝑖|𝐼|}

■ Set of transactions 𝑇 = 𝑡1…𝑡 𝑇 , (𝑡 = 𝑖1… 𝑖 𝑡 )

■ Context 𝑐 = 𝑡\𝑖𝑠

■ Generate
❑ probability distribution 𝑃(𝑖𝑠|𝑐)
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Challenges

■ Context is hard to learn in previous approaches.

■ Markov Chain
❑ Only captures the first-order transition

■ Matrix Factorization
❑ Easily suffers from sparsity issues

■ RNN 
❑ Too high computational cost for large data
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Proposed Method
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Input Layer

■ Input: set of one-hot encoded items

■ Output: set of contextual item embeddings

■ 𝐖𝑖 performs as an embedding lookup table.

Apple

Bread

001000

000001

1 3 4 2

5 8 2 3

1 3 1 5

7 3 8 9

4 6 5 7

2 1 4 4

𝐖𝑖T

(1, 3, 1, 5)

(2, 1, 4, 4)

Input Output
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Context Layer (Attention)

■ Input: set of contextual embeddings

■ Output: context vector

■ Attention vector indicates which vector 

should be emphasize to describe context.

(1, 3, 1, 5)

(2, 1, 4, 4)

Input

(1, 0, 1, 0)

2

6

Softmax

0.018

0.982

Output
Attention

𝐰𝛼

1.982, 

1.036, 

3.946, 

4.018
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Output Layer

■ Input: context vector

■ Output: probability distribution over all items

1.982, 

1.036, 

3.946, 

4.018
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0.6556

0.0046
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Learning

■ Given dataset

■ joint probability distribution

■ => Maximize

❑ Use NCE(Noise Contrastive Estimation) to drop Z term.

high computational cost
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Experimental Setup

■ test set: 20% of last 30 days’ data 

■ evaluation metric: Recall@K, MRR
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Comparison Methods

■ PBRS

■ Typical pattern-based recommender system

■ FPMC

■ Matrix factorization + first-order Markov chain

■ PRME

■ Personalized ranking metric embedding method

■ Markov chain framework
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Comparison Methods

■ GRU4Rec

■ RNN-based approach

■ TEM

■ ATEM without attention

■ Attention mechanism is replaced with distance-

based exponential decay.
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Results
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Discussions

■ ATEM clearly achieves the best results on both 

dataset.

■ The highest MRR proves that ATEM can effectively 

put the users’ desired items in the front of the 

recommendation list.

■ ATEM builds context from whole items while others only 

use first-order dependency.

■ Attention helps to find important item a lot.
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Discussions

■ ATEM has a very shallow and concise structure

■ Easy to train.

■ Efficient to recompute ranking scores while context keep 

updating.

■ ATEM has more resistant for long context.



Jongjin Kim (SNU) 21

Discussions

■ ATEM has more resistant for order shuffling.
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Discussions

■ ATEM can generate novel recommendation list.

■ Novelty Metric MCAN@K
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Conclusion

■ ATEM is accurate, novel, efficient model for 

transactional context recommendation.

■ Experiments show ATEM significantly beats 

other SotA models in real world datasets.

■ We will explore the application of ATEM to 

other problems such as the author-topic 

relation learning.
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Thank you !


