VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback.

R. He & J. McAuley. AAAI 2016.

발표자 김형준

Introduction

- Recommender Systems(RSs) provide personalized suggestions by learning from historical feedback.
 - Historical feedback : explicit (star ratings, etc.), implicit (purchase history, book marks, etc.)
- Matrix Factorization(MF) approaches have been proposed to uncover the most relevant latent dimensions (both in explicit / implicit feedback settings).
 - MF approaches suffer from **<u>cold-start issues</u>** dues to the sparsity of real-world dataset.

 \Rightarrow incorporate <u>visual appearance</u> of the items into the preference predictor.

Objective

- For each user u, we want to generate a **personalized ranking** of the items which the user **haven't provided feedback yet**. (i.e., $I \setminus I_u^+$)

Notation	Explanation
\mathcal{U},\mathcal{I}	user set, item set
\mathcal{I}_{u}^{+}	positive item set of user u
$\widehat{x}_{u,i}$	predicted 'score' user u gives to item i
K	dimension of latent factors
D	dimension of visual factors
F	dimension of Deep CNN features
α	global offset (scalar)
β_u, β_i	user u 's bias, item i 's bias (scalar)
Yu, Yi	latent factors of user u , item $i (K \times 1)$
θ_u, θ_i	visual factors of user u , item $i (D \times 1)$
f_i	Deep CNN visual features of item $i (F \times 1)$
\mathbf{E}	$D \times F$ embedding matrix
β'	visual bias vector (visual bias = $\beta'^T f_i$)

Notations

Preference predictor

- Built on top of Matrix Factorization (MF)

$$\widehat{x}_{u,i} = \alpha + \beta_u + \beta_i + \gamma_u^T \gamma_i,$$

Preference predictor

- Built on top of Matrix Factorization (MF)

- Problem : existence of 'cold' or 'cool' items.
 - Too few associated observations to estimate the latent dimensions.

 \Rightarrow Solve by using <u>visual factors</u>.

Preference predictor

- Use the inner product of the visual factors \rightarrow **visual interaction** between user u and item i.

 $\widehat{x}_{u,i} = \alpha + \beta_u + \beta_i + \gamma_u^T \gamma_i + \theta_u^T \theta_i,$

Preference predictor

- Use the inner product of the visual factors \rightarrow **visual interaction** between user u and item i.

Preference predictor

- Use the inner product of the visual factors \rightarrow **visual interaction** between user u and item i.

Visual Features

• AlexNet

- 5 Convolution layers followed by 3 fully-connected layers.
- Pre-trained on 1.2million ImageNet images
- Take the output of the second fully-connected layer
 - F = 4096 dimensional visual feature vector f_i

Reference :

Imagenet classification with deep convolutional neural networks. Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. NIPS 2012.

Visual Features

• AlexNet

Reference :

Imagenet classification with deep convolutional neural networks. Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. NIPS 2012.

Model Learning Using BPR

Model learning using Bayesian Personalized Ranking (BPR)

- Training set D_s consist of triples (u, i, j)

$$D_S = \{(u, i, j) | u \in \mathcal{U} \land i \in \mathcal{I}_u^+ \land j \in \mathcal{I} \setminus \mathcal{I}_u^+ \}.$$

- *u*:user
- *i* : item that user *u* expressed positive feedback
- *j* : non-observed item

Model learning using Bayesian Personalized Ranking (BPR)

- Following optimization criterion is used for **personalized ranking (BPR-OPT)**

$$BPR - OPT = \sum_{(u,i,j) \in D_S} ln\sigma(\widehat{x}_{uij}) - \lambda_{\Theta} ||\Theta||^2$$

- Where \widehat{x}_{uij} is defined as : $\widehat{x}_{uij} = \widehat{x}_{u,i} - \widehat{x}_{u,j}$, ¹

For more details :

BPR Paper : BPR: Bayesian Personalized Ranking from Implicit Feedback. Rendle et al. (2009) (<u>https://arxiv.org/pdf/1205.2618.pdf</u>) Blog post : https://leehyejin91.github.io/post-bpr/

Model Learning Using BPR

Model learning using Bayesian Personalized Ranking (BPR)

- Following optimization criterion is used for personalized ranking (BPR-OPT)

For more details :

BPR Paper : BPR: Bayesian Personalized Ranking from Implicit Feedback. Rendle et al. (2009) (<u>https://arxiv.org/pdf/1205.2618.pdf</u>) Blog post : https://leehyejin91.github.io/post-bpr/

Model Learning Using BPR

Model learning using Bayesian Personalized Ranking (BPR)

- Following optimization criterion is used for **personalized ranking (BPR-OPT)**

$$BPR - OPT = \sum_{\substack{(u,i,j) \in D_S \\ \text{Derivative of } \partial \ln \sigma(\hat{x}_{uij}) \\ \text{Derivative of } \partial \Pi \sigma(\hat{x}_{uij})$$

- Updates the parameters in the following way:

$$\Theta \leftarrow \Theta + \eta \cdot (\sigma(-\widehat{x}_{uij})\frac{\partial \widehat{x}_{uij}}{\partial \Theta} - \lambda_{\Theta}\Theta),$$

For more details :

BPR Paper : BPR: Bayesian Personalized Ranking from Implicit Feedback. Rendle et al. (2009) (<u>https://arxiv.org/pdf/1205.2618.pdf</u>) Blog post : https://leehyejin91.github.io/post-bpr/

Model learning using Visual Bayesian Personalized Ranking (VBPR)

- For VBPR, $\hat{x}_{u,i}$ and $\hat{x}_{u,i}$ considers newly-introduced visual parameters as well.

$$\widehat{x}_{u,i} = \alpha + \beta_u + \beta_i + \gamma_u^T \gamma_i + \theta_u^T \mathbf{E} f_i + \beta_i^T f_i.$$
 Instead of $\widehat{x}_{u,i} = \alpha + \beta_u + \beta_i + \gamma_u^T \gamma_i,$

- Use the same optimization criterion :

$$BPR - OPT = \sum_{(u,i,j) \in D_S} ln\sigma(\widehat{x}_{uij}) - \lambda_{\Theta} ||\Theta||^2$$

- Updates the parameters in the following way:

$$\begin{aligned} \theta_{u} &\leftarrow \theta_{u} + \eta \cdot (\sigma(-\widehat{x}_{uij})\mathbf{E}(f_{i} - f_{j}) - \lambda_{\Theta}\theta_{u}), \\ \beta' &\leftarrow \beta' + \eta \cdot (\sigma(-\widehat{x}_{uij})(f_{i} - f_{j}) - \lambda_{\beta}\beta'), \\ \mathbf{E} &\leftarrow \mathbf{E} + \eta \cdot (\sigma(-\widehat{x}_{uij})\theta_{u}(f_{i} - f_{j})^{T} - \lambda_{\mathbf{E}}\mathbf{E}). \end{aligned}$$

Gradient for each parameters $heta_u, eta', E$

$$\frac{\partial ln\sigma(\hat{x}_{uij})}{\partial \theta_{u}} = \frac{1}{\sigma(\hat{x}_{uij})} \frac{\partial \sigma(\hat{x}_{uij})}{\partial \hat{x}_{uij}} \frac{\partial \hat{x}_{uij}}{\partial \theta_{u}} = \sigma(-\hat{x}_{uij}) \frac{\partial \hat{x}_{uij}}{\partial \theta_{u}} = \sigma(-\hat{x}_{uij}) \left(\frac{\partial \hat{x}_{u,i}}{\partial \theta_{u}} - \frac{\partial \hat{x}_{u,j}}{\partial \theta_{u}}\right) = \sigma(-\hat{x}_{uij}) (Ef_{i} - Ef_{j}) = \sigma(-\hat{x}_{uij}) E(f_{i} - f_{i})$$

$$\frac{\partial ln\sigma(\hat{x}_{uij})}{\partial \beta'} = \frac{1}{\sigma(\hat{x}_{uij})} \frac{\partial \sigma(\hat{x}_{uij})}{\partial \hat{x}_{uij}} \frac{\partial \hat{x}_{uij}}{\partial \beta'} = \sigma(-\hat{x}_{uij}) \frac{\partial \hat{x}_{uij}}{\partial \beta'} = \sigma(-\hat{x}_{uij}) \left(\frac{\partial \hat{x}_{u,i}}{\partial \beta'} - \frac{\partial \hat{x}_{u,j}}{\partial \beta'}\right) = \sigma(-\hat{x}_{uij}) (f_{i} - f_{j}) = \sigma(-\hat{x}_{uij}) (f_{i} - f_{i})$$

$$\frac{\partial ln\sigma(\hat{x}_{uij})}{\partial E} = \frac{1}{\sigma(\hat{x}_{uij})} \frac{\partial \sigma(\hat{x}_{uij})}{\partial \hat{x}_{uij}} \frac{\partial \hat{x}_{uij}}{\partial E} = \sigma(-\hat{x}_{uij}) \frac{\partial \hat{x}_{uij}}{\partial E} = \sigma(-\hat{x}_{uij}) \left(\frac{\partial \hat{x}_{u,i}}{\partial E} - \frac{\partial \hat{x}_{u,j}}{\partial E}\right) = \sigma(-\hat{x}_{uij}) (\theta_{u}f_{i}^{T} - \theta_{u}f_{j}^{T}) = \sigma(-\hat{x}_{uij}) \theta_{u}(f_{i} - f_{i})^{T}$$

Scalability

• Efficiency of VBPR

$$BPR \longrightarrow \Theta \leftarrow \Theta + \eta \cdot (\sigma(-\widehat{x}_{uij})\frac{\partial \widehat{x}_{uij}}{\partial \Theta} - \lambda_{\Theta}\Theta), \longrightarrow O(K)$$

$$\forall \theta_u \leftarrow \theta_u + \eta \cdot (\sigma(-\widehat{x}_{uij})\mathbf{E}(f_i - f_j) - \lambda_{\Theta}\theta_u), \longrightarrow O(D \times F) = O(D)$$

$$\beta' \leftarrow \beta' + \eta \cdot (\sigma(-\widehat{x}_{uij})(f_i - f_j) - \lambda_{\beta}\beta'), \longrightarrow O(F)$$

$$\mathbf{E} \leftarrow \mathbf{E} + \eta \cdot (\sigma(-\widehat{x}_{uij})\theta_u(f_i - f_j)^T - \lambda_{\mathbf{E}}\mathbf{E}). \longrightarrow O(D \times F) = O(D)$$

- F is a constant (fixed dimension of Deep CNN features)
- **K** is the dimension of latent factors.
- **D** is the dimension of visual factors.
- Overall time complexity of updating each triple (*u*, *i*, *j*) :

$$O(K) + O(D \times F) = O(K) + O(D) = O(K + D)$$

Linear in the number of dimensions!

Notation	Explanation
\mathcal{U},\mathcal{I}	user set, item set
\mathcal{I}_{n}^{+}	positive item set of user u
$\widehat{x}_{u,i}$	predicted 'score' user u gives to item i
K	dimension of latent factors
D	dimension of visual factors
F	dimension of Deep CNN features
α	global offset (scalar)
β_u, β_i	user u 's bias, item i 's bias (scalar)
Yu, Yi	latent factors of user u, item i $(K \times 1)$
θ_u, θ_i	visual factors of user u, item i $(D \times 1)$
f_i	Deep CNN visual features of item $i (F \times 1)$
E	$D \times F$ embedding matrix
B'	visual bias vector (visual bias = $\beta^{T} f_i$)

notations

Datasets

Amazon.com

- Women's Clothing
- Men's Clothing
- Cell Phones (expect visual characteristics to play a smaller role than clothing)
- Use user's review histories as user feedback.

Tradesy.com

- Use user's purchase history and "thumbs-up" as user feedback.
- Marketplace for woman to buy and sell pre-owned clothing items.
 - Requires **cold-start** predictions : **"one-off"** trading characteristics.
 - Probably sell one item to one user, resulting in cold start environment.
- "cold start" training set : items that had fewer than 5 positive feedbacks.

• Evaluation Methods : AUC

- For each user u, random item is used for validation V_u , another item is used to testing T_u , remaining data is used for training.
- Predicted **ranking** is evaluated on T_u with the metric **AUC** (area under the ROC curve).

$$AUC = \frac{1}{|\mathcal{U}|} \sum_{u} \frac{1}{|E(u)|} \sum_{(i,j) \in E(u)} \delta(\widehat{x}_{u,i} > \widehat{x}_{u,j})$$

- $\delta(b)$: indicator function that returns 1 if *b* is true.
- Report the performance on the test set *T* for the hyperparameters with the best performance on the validation set *V*.

The AUC per user is defined as : AUC(u) :=
$$\frac{1}{|I_u^+| |I \setminus I_u^+|} \sum_{i \in I_u^+} \sum_{j \in |I \setminus I_u^+|} \delta(\hat{x}_{uij} > 0)$$

The average AUC for all users : AUC :=
$$\frac{1}{|U|} \sum_{u \in U} AUC(u) = \frac{1}{|U|} \sum_u \frac{1}{|E(u)|} \sum_{(i,j) \in E(u)} \delta(\hat{x}_{u,i} > \hat{x}_{u,j})$$

Reference :

BPR: Bayesian Personalized Ranking from Implicit Feedback. Rendle et al. UAI 2009.

Baselines

- Random (**RAND**) : rank items randomly
- Most Popular (**MP**) : rank items according to their popularity
- Matric Factorization methods : MM-MF, BPR-MF
- Image-based Recommendation (**IBR**) : learns a visual space and retrieves similar items to a query image using nearest-neighbor search.
- WRMF : point-wise method
- Used the same total number of dimensions for all MF-based methods.
 - For VBPR, visual and non-visual dimensions are fixed to a 50-50 spilt.

Table 3: AUC on the test set \mathcal{T} (#factors = 20). The best performing method on each dataset is boldfaced.									
Dataset	Setting	(a) RAND	(b) MP	(c) IBR	(d) MM-MF	(e) BPR-MF	(f) VBPR	improve f vs. best	ement f vs. e
Amazon Women	All Items	0.4997	0.5772	0.7163	0.7127	0.7020	0.7834	9.4%	11.6%
	Cold Start	0.5031	0.3159	0.6673	0.5489	0.5281	0.6813	2.1%	29.0%
Amazon Men	All Items	0.4992	0.5726	0.7185	0.7179	0.7100	0.7841	9.1%	10.4%
	Cold Start	0.4986	0.3214	0.6787	0.5666	0.5512	0.6898	1.6%	25.1%
Amazon Phones	All Items	0.5063	0.7163	0.7397	0.7956	0.7918	0.8052	1.2%	1.7%
	Cold Start	0.5014	0.3393	0.6319	0.5570	0.5346	0.6056	-4.2%	13.3%
Tradesy.com	All Items	0.5003	0.5085	N/A	0.6097	0.6198	0.7829	26.3%	26.3%
	Cold Start	0.4972	0.3721	N/A	0.5172	0.5241	0.7594	44.9%	44.9%

- VBPR (built on top of BPR-MF) on average improves on BPR-MF by over 12% + over 28% on cold start setting.
 - Shows the importance of CNN features (visual features).
- IBR (Image-based recommendation) outperforms MF-based methods in cold start settings \leftrightarrow IBR loses to MF-based methods in warm start settings.
 - Not trained on historical user feedback.

Table 3: AUC on the test set T (#factors = 20). The best performing method on each dataset is boldfaced.										
Dataset	Setting	(a) RAND	(b) MP	(c) IBR	(d) MM-MF	(e) BPR-MF	(f) VBPR	improve f vs. best	ement f vs. e	
Amazon Women	All Items	0.4997	0.5772	0.7163	0.7127	0.7020	0.7834	9.4%	11.6%	
	Cold Start	0.5031	0.3159	0.6673	0.5489	0.5281	0.6813	2.1%	29.0%	
Amazon Men	All Items	0.4992	0.5726	0.7185	0.7179	0.7100	0.7841	9.1%	10.4%	
	Cold Start	0.4986	0.3214	0.6787	0.5666	0.5512	0.6898	1.6%	25.1%	
Amazon Phones	All Items	0.5063	0.7163	0.7397	0.7956	0.7918	0.8052	1.2%	1.7%	
	Cold Start	0.5014	0.3393	0.6319	0.5570	0.5346	0.6056	-4.2%	13.3%	
Tradesy.com	All Items	0.5003	0.5085	N/A	0.6097	0.6198	0.7829	26.3%	26.3%	
	Cold Start	0.4972	0.3721	N/A	0.5172	0.5241	0.7594	44.9%	44.9%	
Tradesy.com	All Items	0.5003	0.5085	N/A	0.6097	0.6198	0.7829	26.3%	26.39	
	Cold Start	0.4972	0.3721	N/A	0.5172	0.5241	0.7594	44.9%	44.99	

- VBPR (built on top of BPR-MF) on average improves on BPR-MF by over 12% + over 28% on cold start setting.
 - Shows the importance of CNN features (visual features).
- IBR (Image-based recommendation) outperforms MF-based methods in cold start settings \leftrightarrow IBR loses to MF-based methods in warm start settings.
 - Not trained on historical user feedback.

Table 3: AUC on the test set \mathcal{T} (#factors = 20). The best performing method on each dataset is boldfaced.									
Dataset	Setting	(a) RAND	(b) MP	(c) IBR	(d) MM-MF	(e) BPR-MF	(f) VBPR	improve f vs. best	ement f vs. e
Amazon Women	All Items	0.4997	0.5772	0.7163	0.7127	0.7020	0.7834	9.4%	11.6%
	Cold Start	0.5031	0.3159	0.6673	0.5489	0.5281	0.6813	2.1%	29.0%
Amazon Men	All Items	0.4992	0.5726	0.7185	0.7179	0.7100	0.7841	9.1%	10.4%
	Cold Start	0.4986	0.3214	0.6787	0.5666	0.5512	0.6898	1.6%	25.1%
Amazon Phones	All Items	0.5063	0.7163	0.7397	0.7956	0.7918	0.8052	1.2%	1.7%
	Cold Start	0.5014	0.3393	0.6319	0.5570	0.5346	0.6056	-4.2%	13.3%
Tradesy.com	All Items	0.5003	0.5085	N/A	0.6097	0.6198	0.7829	26.3%	26.3%
	Cold Start	0.4972	0.3721	N/A	0.5172	0.5241	0.7594	44.9%	44.9%

- VBPR outperforms all the baselines in most cases.
- More improvements in Tradesy.com settings. (cold start dataset)
- Visual features show greater benefits on clothing than cellphone datasets.
 - Visual factors play a smaller role when selecting cellphones.
- Cold start items are 'unpopular', popularity-based methods were ineffective

Table 3: AUC on the test set T (#factors = 20). The best performing method on each dataset is boldfaced.									
Dataset	Setting	(a) RAND	(b) MP	(c) IBR	(d) MM-MF	(e) BPR-MF	(f) VBPR	improve f vs. best	ement f vs. e
Amazon Women	All Items	0.4997	0.5772	0.7163	0.7127	0.7020	0.7834	9.4%	11.6%
	Cold Start	0.5031	0.3159	0.6673	0.5489	0.5281	0.6813	2.1%	29.0%
Amazon Men	All Items	0.4992	0.5726	0.7185	0.7179	0.7100	0.7841	9.1%	10.4%
	Cold Start	0.4986	0.3214	0.6787	0.5666	0.5512	0.6898	1.6%	25.1%
Amazon Phones	All Items	0.5063	0.7163	0.7397	0.7956	0.7918	0.8052	1.2%	1.7%
	Cold Start	0.5014	0.3393	0.6319	0.5570	0.5346	0.6056	-4.2%	13.3%
Tradesy.com	All Items	0.5003	0.5085	N/A	0.6097	0.6198	0.7829	26.3%	26.3%
	Cold Start	0.4972	0.3721	N/A	0.5172	0.5241	0.7594	44.9%	44.9%

- VBPR outperforms all the baselines in most cases.
- More improvements in Tradesy.com settings. (cold start dataset)
- Visual features show greater benefits on clothing than cellphone datasets.
 - Visual factors play a smaller role when selecting cellphones.
- Cold start items are 'unpopular', popularity-based methods were ineffective

Table 3: AUC on the test set \mathcal{T} (#factors = 20). The best performing method on each dataset is boldfaced.									
Dataset	Setting	(a) RAND	(b) MP	(c) IBR	(d) MM-MF	(e) BPR-MF	(f) VBPR	improve f vs. best	ement f vs. e
Amazon Women	All Items	0.4997	0.5772	0.7163	0.7127	0.7020	0.7834	9.4%	11.6%
	Cold Start	0.5031	0.3159	0.6673	0.5489	0.5281	0.6813	2.1%	29.0%
Amazon Men	All Items	0.4992	0.5726	0.7185	0.7179	0.7100	0.7841	9.1%	10.4%
	Cold Start	0.4986	0.3214	0.6787	0.5666	0.5512	0.6898	1.6%	25.1%
Amazon Phones	All Items	0.5063	0.7163	0.7397	0.7956	0.7918	0.8052	1.2%	1.7%
	Cold Start	0.5014	0.3393	0.6319	0.5570	0.5346	0.6056	-4.2%	13.3%
Tradesy.com	All Items	0.5003	0.5085	N/A	0.6097	0.6198	0.7829	26.3%	26.3%
	Cold Start	0.4972	0.3721	N/A	0.5172	0.5241	0.7594	44.9%	44.9%

- VBPR outperforms all the baselines in most cases.
- More improvements in Tradesy.com settings. (cold start dataset)
- Visual features show greater benefits on clothing than cellphone datasets.
 - Visual factors play a smaller role when selecting cellphones.
- Cold start items are 'unpopular', popularity-based methods were ineffective

Table 3: AUC on the test set \mathcal{T} (#factors = 20). The best performing method on each dataset is boldfaced.									
Dataset	Setting	(a) RAND	(b) MP	(c) IBR	(d) MM-MF	(e) BPR-MF	(f) VBPR	improve f vs. best	ement f vs. e
Amazon Women	All Items	0.4997	0.5772	0.7163	0.7127	0.7020	0.7834	9.4%	11.6%
	Cold Start	0.5031	0.3159	0.6673	0.5489	0.5281	0.6813	2.1%	29.0%
Amazon Men	All Items	0.4992	0.5726	0.7185	0.7179	0.7100	0.7841	9.1%	10.4%
	Cold Start	0.4986	0.3214	0.6787	0.5666	0.5512	0.6898	1.6%	25.1%
Amazon Phones	All Items	0.5063	0.7163	0.7397	0.7956	0.7918	0.8052	1.2%	1.7%
	Cold Start	0.5014	0.3393	0.6319	0.5570	0.5346	0.6056	-4.2%	13.3%
Tradesy.com	All Items	0.5003	0.5085	N/A	0.6097	0.6198	0.7829	26.3%	26.3%
	Cold Start	0.4972	0.3721	N/A	0.5172	0.5241	0.7594	44.9%	44.9%

- VBPR outperforms all the baselines in most cases.
- More improvements in Tradesy.com settings. (cold start dataset)
- Visual features show greater benefits on clothing than cellphone datasets.
 - Visual factors play a smaller role when selecting cellphones.
- Cold start items are 'unpopular', popularity-based methods were ineffective

Figure 2: AUC with varying dimensions.

• For MF-based methods perform better as the number of factors increases.

Figure 3: AUC with training iterations (#factors=20).

• VBPR takes longer to converge than other MF-based methods. (about 3.5 hours)

Figure 4: 2-D visualization (with t-SNE (?)) of the 10-D visual space learned from *Amazon Women*. All images are from the test set. For clarity, the space is discretized into a grid and for each grid cell one image is randomly selected among overlapping instances.

• Although visual features were extracted from a CNN pre-trained on a different dataset, they were able to learn a visual transition across different categories.

- VBPR : methods that incorporates <u>visual features</u> for personalized ranking tasks.
 - Trained on Bayesian Personalized Ranking (BPR) using stochastic gradient ascent.
- VBPR outperforms state-of-the-art ranking techniques and alleviate <u>cold start</u> <u>issues</u>.

Thank you