Hyunsoo Na 2021. 6. 9

Index

- Overview
- Introduction
- DeepStyle
- Experiment
- Conclusion

Overview

DeepStyle

- Q Liu, et al. DeepStyle: Learning User Preferences for Visual Recommendation, SIGIR, 2017

• Overview

- Visual Recommendation
- Style Features

Overview

Introduction

Visual Information

- Visual Dimension => User Preferences
- Better Personalized Recommendation

Previous Studies

- Personalized Matching of items on visual features
- Visual BPR (VBPR)
- Failed to capture different styles of items

Introduction

Clothing Cluster

- CNN visual features
- One Row is one Cluster
- Cluster based on clothing category
- Different styles not distinguished

Category vs Style

- Clothing Category is very powerful
 - Similarity based
 - Leather shoes vs Sneakers
 - Leather shoes vs Suit Pants
- Different styles
 - Casual, formal, male, female...
- Similar style items are bought together
- Sparse Hierarchical Embedding
 - Varying Style Features

Visual Feature Space

- Items with similar styles may not be similar in visual space
- How can we capture style over dominant category features?

DeepStyle

- Item = Style + Category
- Subtract category representation from visual features
- BPR => Personalized Recommendation

Notation

- Set of items selected by user u $\, \mathcal{I}^{u} \,$
- Item's specific visual category l_i

Architecture

- 5 Convolutional layers + 3 FC Layers
- Pre-trained on ImageNet
- 4096 visual feature vector

Obtaining Style Features

- Visual Feature $\mathbf{s}_i = \mathbf{E}\mathbf{v}_i \mathbf{l}_i$
- Style Feature $\mathbf{s}_i \in \mathbb{R}^d$
- Weight Matrix $\mathbf{E} \in \mathbb{R}^{d \times 409\overline{6}}$

Bayesian Personalized Ranking

- Incorporate style features in BPR (implicit)
- Prediction $\hat{y}_{u,i} = (\mathbf{p}_u)^T (\mathbf{s}_i + \mathbf{q}_i)$
- Latent representation of user/item $\mathbf{p}_u \in \mathbb{R}^d$ $\mathbf{q}_i \in \mathbb{R}^d$

Objection

- Model needs to satisfy $\, \hat{y}_{m{u},m{i}} > \hat{y}_{m{u},m{i}'}$
- Positive/Negative Sample $p(u, i > i') = g(\hat{y}_{u,i} \hat{y}_{u,i'})$
- g : Usually Sigmoid
- Negative log likelihood : Minimize

$$J = \sum_{u,i} \ln \left(1 + e^{-(\hat{y}_{u,i} - \hat{y}_{u,i'})} \right) + \lambda \|\theta\|^2$$

- Normalization λ , Parameters heta

Datasets

- Clothing subset and Home/Kitchen subsets of Amazon Dataset
- Clothing 74 categories
- Home/Kitchen 86 categories
- 80% training, 20% testing
- Remove users with less than 5 records and more than 100 records
- Warm Start : overall ranking
- Cold Start : Items with less than 5 records during training
- AUC Metric

$$AUC = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|set (i \in \mathcal{I}^u, i' \notin \mathcal{I}^u)|} \sum_{i \in \mathcal{I}^u, i' \notin \mathcal{I}^u} \delta \left(p_{u,i} > p_{u,i'} \right)$$

- Dirac delta function : 1 when condition met, otherwise 0 $\,\delta$

Benchmark

- BPR
- Visual BPR (VBPR)
- Sparse Hierarchical Embedding (Sherlock)
 - Extends VBPR to categorical information
 - Categorical Tree
 - Embedding matrices for transferring visual features to style features vary according category
 - One embedding matrix for each category leads to large amount of parameter

Category + Style

- Visual Feature is important (especially for cold-start)
- BPR vs VBPR
- Categorical Info is important in style
- VBPR vs DeepStyle
- Learning style feature is important
- Sherlock vs DeepStyle

Table 1: Performance comparison on predicting users preferences on items measured by AUC. The dimensionality is d = 10 on both datasets.

dataset	setting	BPR	VBPR	Sherlock	DeepStyle
Clothing	warm-start cold-start	$0.6243 \\ 0.5037$	$0.7441 \\ 0.6915$	$0.7758 \\ 0.7167$	$0.7961 \\ 0.7317$
Home	warm-start cold-start	$0.5848 \\ 0.5053$	$\begin{array}{c} 0.6845\\ 0.6140\end{array}$	$0.7049 \\ 0.6322$	$0.7155 \\ 0.6396$

Dimensionality

- Stable after d=10 : dimension flexibility
- Sherlock overfit after 10
 - Assumption : One embedding matrix for each category estimate too many parameters

Figure 3: Performance of DeepStyle, Sherlock and VBPR with varying dimensionality under the warmstart setting measured by AUC.

• \	Visualization Formal	There was no Supervision of Style!! Automatically captured Styles		
	1 🖉 🕴 🛝	🔩 🖉 🥼 🛊 隊	🏟 🛔 🕴 🏠 🕴	
		1 🛛 🎡 🔺 🍠	// 🎽 🚞 💓	
		I () () () () () () () () () (
	🕴 🤌 👌 🕯 🚥	🔍 🕐 🧗 🎙 🗄	🕴 🐐 🛦 📓 🐐	
Banquet	× * * * * *	🕴 🔰 👖 🎰 🕰	🋕 🚺 🗸 🏹 😂 🗛	
	A A A I S			
) 💔 🏌 🕻 🁘			
			👖 🕑 🌒 🚺	
<u>(</u>	<i>I</i> I I I I I I I I I I I I I I I I I I	I & C & D	\$ \$ \$	

Female Male

Conclusion

DeepStyle

- Visual Recommendation
- Learning styles of items and preferences of users
- Subtracts categorical information from visual features
- Added style features to VBPR

End