Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent Rainer Gemulla, et al. (2011)

박민주

Motivation

Matrix Factorization

~

Motivation

Matrix Factorization

X

~

Motivation

Matrix Factorization

Minimize loss function with Gradient Descent

~

X

Background

Gradient Descent

Weight

 $\theta_{n+1} = \theta_n - \epsilon \hat{L}'(\theta_n)$

Background

Stochastic Gradient Descent

$$\theta_{n+1} = \theta_n - \epsilon \hat{L}'(\theta_n)$$

In practice, with additional projection $\theta_{n+1} = \Pi_H [\theta_n - \epsilon \hat{L}'(\theta_n)]$

* *H*: Constraint set

Stochastic Gradient Descent

Finding the best model argmin $L(V, W, H) \rightarrow \theta_{n+1} = \theta_n - \epsilon \hat{L}'(\theta_n)$ _{W,H} $\theta = (W, H)$

~

	Avatar	Matrix	Up
Alice		4	2
Bob	3	2	
Charlie	5		3

Stochastic Gradient Descent

	Avatar	Matrix	Up
Alice		4	2
Bob	3	2	
Charlie	5		3

Decompose Loss Function

$$L = \sum_{(i,j)\in \mathbb{Z}} l(V_{ij}, W_{i^*}, H_*)$$

~

$$(Z = \{(i, j) : V_{ij} \neq 0\})$$

$$\Theta) = L_{ij}(\Theta) = l(V_{ij}, W_{i^*}, H_{*j})$$

: local loss at position z = (i, j)

$$\theta) = \sum_{z} L'_{z}(\theta)$$

• $\hat{L}'(\theta) = NL'_{z}(\theta)$ N = |Z|

ex) $\hat{L}'(\theta) = 6L'_{z_1}(\theta)$

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W_0 and H_0 while not converged do /* step */ Select a training point $(i, j) \in Z$ uniformly at random. $W'_{i*} \leftarrow W_{i*} - \epsilon_n N \frac{\partial}{\partial W_{i*}} l(V_{ij}, W_{i*}, H_{*j})$ $H_{*j} \leftarrow H_{*j} - \epsilon_n N \frac{\partial}{\partial H_{*j}} l(V_{ij}, W_{i*}, H_{*j})$ $W_{i*} \leftarrow W'_{i*}$ end while

10

Stratified SGD

11

SSGD

- SSGD Algorithm
 - $L(\theta) = w_1 L_1(\theta) + w_2 L_2(\theta) + \dots + w_a L_a(\theta)$
 - Stratum sequence $\{\gamma_n\} = \{1, \dots, q\}$
 - Update $\theta_{n+1} = \Pi_H [\theta_n \epsilon_n \hat{L}'_{\gamma_n}(\theta_n)]$

- Loss function is decomposed into weighted sum of local loss functions

SSGD

Q) Does SSGD converge?

A) SSGD converges under several conditions

- 1. Step-size conditions
- 2. Loss conditions
- 3. Stratification conditions
- 4. Stratum-sequence conditions

[10] R. Gemulla, P. J. Haas, E. Nijkamp, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. Technical Report RJ10481, IBM Almaden Research Center, San Jose, CA, 2011. Available at www.almaden.ibm.com/cs/people/peterh/dsgdTechRep.pdf.

Details in paper

SGD cannot be used directly for rank-r factorization

Individual steps depend on each other $\theta_{n+1} = \theta_n - \epsilon \hat{L}'(\theta_n)$

Stratify the training set Z into strata so that each individual stratum are independent

14

- Distributed SGD
 - "Interchangeability"
 - : share neither row nor column
 - Two machines can be updated at the same time

 The idea behind DSGD is to find such blocks that have no data in common and <u>update them simultaneously</u>

• Goal : minimize the loss function and update factor vectors (W, H)

Proceeded in stratums

Algorithm 2 DSGD for Matrix Factorization **Require:** Z, W_0, H_0 , cluster size d $\boldsymbol{W} \leftarrow \boldsymbol{W}_0$ and $\boldsymbol{H} \leftarrow \boldsymbol{H}_0$ Block Z / W / H into $d \times d / d \times 1 / 1 \times d$ blocks while not converged do /* epoch */ Pick step size ϵ for $s = 1, \ldots, d$ do /* subepoch */ Pick d blocks $\{Z^{1j_1}, \ldots, Z^{dj_d}\}$ to form a stratum for $b = 1, \ldots, d$ do /* in parallel */ Run SGD on the training points in Z^{bj_b} (step size = ϵ) end for end for end while

Algorithm 2 DSGD for Matrix Factorization **Require:** Z, W_0, H_0 , cluster size d $W \leftarrow W_0$ and $H \leftarrow H_0$ Block Z / W / H into $d \times d / d \times 1 / 1 \times d$ blocks while not converged do /* epoch */ Pick step size ϵ for s = 1, ..., d do /* subepoch */ Pick d blocks $\{Z^{1j_1}, \ldots, Z^{dj_d}\}$ to form a stratum for $b = 1, \ldots, d$ do /* in parallel */ Run SGD on the training points in Z^{bj_b} (step size = ϵ) end for end for end while

Sequence is chosen under SSGD conditions → **DSGD will converge!**

Algorithm 2 DSGD for Matrix Factorization **Require:** Z, W_0, H_0 , cluster size d $\boldsymbol{W} \leftarrow \boldsymbol{W}_0$ and $\boldsymbol{H} \leftarrow \boldsymbol{H}_0$ Block Z / W / H into $d \times d / d \times 1 / 1 \times d$ blocks while not converged do /* epoch */ Pick step size ϵ for $s = 1, \ldots, d$ do /* subepoch */ Pick d blocks $\{Z^{1j_1}, \ldots, Z^{dj_d}\}$ to form a stratum for $b = 1, \ldots, d$ do /* in parallel */ Run SGD on the training points in Z^{bj_b} (step size = ϵ) end for end for end while

• Sum up losses in each stratum $L(W, H) = \sum_{s=1}^{q} w_s L_s(W, H)$ $L_s(W)$

• Gradient estimate $\hat{L}'_{s}(W, H) = N_{s}c_{s}L'_{ij}(W, H)$

$$V,H) = c_s \sum_{(i,j)\in Z_s} L_{ij}(W,H) * c_s$$
: stratum-specific cons

*
$$N_s = |Z_s|$$
 :size of stratum

• Distributed SGD

 $\hat{L}'(W,H)$

Experiment

- Compared various factorization algorithms w.r.t
 - Convergence
 - Runtime efficiency
 - Scalability
- Implement on MapReduce
 - In-memory experiment : R, C (Netflix competition dataset)
 - Large scaling experiment : Hadoop (larger synthetic dataset)

Experiment

1. Convergence & 2. Runtime Efficiency

Experiment

3. Scalability

Figure 3: Speed-up experiment (Hadoop cluster, 143GB data)

Conclusion

- Develop stratified version of SGD (SSGD)
- that can <u>efficiently handle web-scale matrices</u>
- Future Work
 - schemes, emerging distributed-processing platforms
 - Extend to other applications

Refine SSGD to obtain DSGD, a distributed matrix-factorization algorithm

- Investigate alternative loss functions, regularizations, stratification

Thank you