210531 Special Lectures on Database (RecSys)

Neural Graph Collaborative Filtering

Heeseung Yun

heeseung.yun@vision.snu.ac.kr

Contents

- Motivation
- Approach
- Experiment
- Conclusion

Motivation

• Two components of CF

	Embedding	Interaction
MF	Factorization	Inner product
Collaborative DL	NN	-
Neural CF	-	NN
Translation CF		Euclidean distance

$$\mathbf{R}_{ij} \sim \mathcal{N}(\mathbf{u}_i^T \mathbf{v}_j, \mathbf{C}_{ij}^{-1})$$

• Two components of CF

	Embedding	Interaction	
MF	Factorization	Inner product	
Collaborative DL	NN	-	
Neural CF	-	NN	
Translation CF		Euclidean distance	

 $\mathbf{R}_{ij} \sim \mathcal{N}(\mathbf{u}_i^T \mathbf{v}_j, \mathbf{C}_{ij}^{-1})$

- Question: Are they truly exploiting "collaborative signal"?
 - Not really... (only for objective function)
 - Embedding is suboptimal

Gist: <u>High-order connectivity</u> from user-item interactions
 Bipartite (1st order)

Gist: <u>High-order connectivity</u> from user-item interactions
 Bipartite (1st order) → Tree (high order)

- Gist: <u>High-order connectivity</u> from user-item interactions
 - Bipartite (1st order) \rightarrow Tree (high order)
 - Embedding propagation
 - Recursive
 - Strength of information flow

Solution: NGCF

Approach

Model

- Embeddings
- Propagation
- Prediction

Model

- Embeddings
- Propagation
- Prediction

Embedding Layer

- Embedding matrix $\mathbf{E} \in \mathbb{R}^{(N+M) \times d}$ $\mathbf{E} = \begin{bmatrix} \mathbf{e}_{u_1}, \cdots, \mathbf{e}_{u_N} & \mathbf{e}_{i_1}, \cdots, \mathbf{e}_{i_M} \end{bmatrix}$
 - Embeddings are refined for both training and <u>inference</u>
 - *i.e.*, model is used in inference stage

Model

- Embeddings
- Propagation
- Prediction

Embedding Propagation Layer

- Message Construction
 - Message = interaction unit

Embedding Propagation Layer

- Message Aggregation
 - LeakyReLU for encoding small negativity

- *l*-hop neighbors
 - Message Construction ($W^{(l)} \in \mathbb{R}^{d_l \times d_{l-1}}$)

$$\begin{cases} \mathbf{m}_{u \leftarrow i}^{(l)} = p_{ui} \left(\mathbf{W}_{1}^{(l)} \mathbf{e}_{i}^{(l-1)} + \mathbf{W}_{2}^{(l)} (\mathbf{e}_{i}^{(l-1)} \odot \mathbf{e}_{u}^{(l-1)}) \right) \\ \mathbf{m}_{u \leftarrow u}^{(l)} = \mathbf{W}_{1}^{(l)} \mathbf{e}_{u}^{(l-1)}, \end{cases}$$

Message Aggregation

$$\mathbf{e}_{u}^{(l)} = \text{LeakyReLU}\left(\mathbf{m}_{u \leftarrow u}^{(l)} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}^{(l)}\right)$$

Message Aggregation

• Problem: Sampling which nodes to visit

- Propagation in Matrix
 - Intuition: leverage item-user matrix representation

$$E^{(l)} = \text{LeakyReLU}\left((\mathcal{L} + I)E^{(l-1)}W_{1}^{(l)} + \mathcal{L}E^{(l-1)} \odot E^{(l-1)}W_{2}^{(l)}\right)$$

$$\mathcal{L} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \text{ and } A = \begin{bmatrix} 0 & R \\ R^{\top} & 0 \end{bmatrix} \xrightarrow{\text{Interaction matrix}} \text{Interaction matrix}$$

• Example
• Example
 $u_{1} \longrightarrow u_{2} \longrightarrow u_{2} \xrightarrow{i_{1}} R = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$

- Propagation in Matrix
 - Intuition: leverage item-user matrix representation

$$\mathbf{E}^{(l)} = \operatorname{LeakyReLU}\left((\mathcal{L} + \mathbf{I})\mathbf{E}^{(l-1)}\mathbf{W}_{1}^{(l)} + \mathcal{L}\mathbf{E}^{(l-1)}\odot\mathbf{E}^{(l-1)}\mathbf{W}_{2}^{(l)}\right)$$

$$\mathcal{L} = \mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}} \text{ and } \mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{R} \\ \mathbf{R}^{\top} & \mathbf{0} \end{bmatrix} \xrightarrow{} \text{ Interaction matrix}$$

$$\begin{array}{c} \text{Degree matrix} \\ D_{tt} = |\mathcal{N}_{t}|, \\ \mathcal{L}_{ui} = \frac{1}{\sqrt{|\mathcal{N}_{u}||\mathcal{N}_{i}|}} \end{array}$$

Model

- Embeddings
- Propagation
- Prediction

Model Prediction

- Final user-item embeddings
 - Concatenation

$$\mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} \| \cdots \| \mathbf{e}_{u}^{(L)}, \quad \mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} \| \cdots \| \mathbf{e}_{i}^{(L)}$$

- cf) Weighted sum, attention, pooling, LSTM, etc.
- Predict preference
 - Inner product

 $\hat{y}_{\text{NGCF}}(u, i) = \mathbf{e}_u^* {}^{\top} \mathbf{e}_i^*$

Optimization

- Loss: Pairwise BPR with regularization
 - Observed > Unobserved

$$Loss = \sum_{(u, i, j) \in O} -\ln \sigma (\hat{y}_{ui} - \hat{y}_{uj}) + \lambda \|\Theta\|_2^2$$

Unobserved

- Optimizer: Minibatch Adam
- Triplet sampling: random

Optimization

- Dropout
 - Message Dropout & Node Dropout (per layer)
 - Training stage only

Complexity Analysis *Gowalla Dataset

Space Complexity

•
$$|\Theta_{NGCF}| = |\Theta_{MF}| + \sum_{l=1}^{2Ld_l d_{l-1}} (L = 3)$$

Embeddings

- Example: MF (4.5M) vs. NGCF (4.524M)
- Time (Computational) Complexity

•
$$O(\sum_{l=1}^{L} |\mathcal{R}^{+}| d_{l} d_{l-1} + \sum_{l=1}^{L} |\mathcal{R}^{+}| d_{l})$$

Prediction Layer

entries in \mathcal{L}

Nonzero

- Training: MF (20s/epoch) vs. NGCF (80s/epoch)
- Inference: MF (80s) vs. NGCF (260s)

Generalizability Analysis

- Comparison with SVD++
 - NGCF-1 without transformation matrix & nonlinear activation

$$\mathbf{e}_{u}^{(1)} = \text{LeakyReLU}\left(\mathbf{m}_{u \leftarrow u} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}\right)$$
$$\hat{y}_{\text{NGCF-SVD}} = \left(\mathbf{e}_{u} + \sum_{i' \in \mathcal{N}_{u}} p_{ui'} \mathbf{e}_{i'}\right)^{\top} \left(\mathbf{e}_{i} + \sum_{u' \in \mathcal{N}_{i}} p_{iu'} \mathbf{e}_{i}\right)$$

• cf) SVD++

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T \left(p_u + |\mathbf{R}(u)|^{-\frac{1}{2}} \sum_{j \in \mathbf{R}(u)} y_j \right)$$

Generalizability Analysis

- Comparison with SVD++
 - NGCF-1 without transformation matrix & nonlinear activation

$$\mathbf{e}_{u}^{(1)} = \text{LeakyReLU}\left(\mathbf{m}_{u \leftarrow u} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}\right)$$
$$\hat{y}_{\text{NGCF-SVD}} = \left(\mathbf{e}_{u} + \sum_{i' \in \mathcal{N}_{u}} p_{ui'} \mathbf{e}_{i'}\right)^{\top} \left(\mathbf{e}_{i} + \sum_{u' \in \mathcal{N}_{i}} p_{iu'} \mathbf{e}_{i}\right)$$
$$\bullet \text{ cf) SVD++}$$
$$\hat{r}_{ui} = \mu + b_{i} + b_{u} + \left|q_{i}^{T}\left(p_{u} + |\mathbf{R}(u)|^{-\frac{1}{2}} \sum_{j \in \mathbf{R}(u)} y_{j}\right)\right|$$

Experiments

Dataset

- Gowalla
 - Check-in dataset
- Yelp2018
 - Local business (restaurants & bars) dataset for Yelp challenge
- Amazon-book
 - Subset of Amazon-review
- Settings
 - 10-core assumption
 - 70% : 10% : 20% split
 - recall@20, ndcg@20

Dataset	#Users	#Items	#Interactions	Density
Gowalla	29, 858	40, 981	1,027,370	0.00084
Yelp2018*	31,668	38,048	1, 561, 406	0.00130
Amazon-Book	52,643	91, 599	2, 984, 108	0.00062

Baseline

- Factorization-based
 - Matrix Factorization (MF)
 - Trained with BPR loss
 - Neural CF (NeuMF)
 - NN-based prediction (interaction)
- Memory-based
 - Collaborative Memory Network (CMN)
 - Memory slots for similar neighboring users

Baseline

- Graph-based
 - High-order Proximity Recommender (HOP-Rec)
 - Random walk to enrich training data with multi-hop connected items
- Graph Convolution-based
 - PinSage
 - Industrial solution for item-item interaction, two-layered
 - Graph Convolution Matrix Completion (GC-MC)
 - Single-layered (first-order neighbor)
 - SpectralCF
 - Spectral convolution (eigen-decomposition is too heavy)

- State-of-the-Art performance
 - with statistical significance

	Gowalla		Yelp	2018*	Amazon-Book	
	recall	ndcg	recall	ndcg	recall	ndcg
MF	0.1291	0.1109	0.0433	0.0354	0.0250	0.0196
NeuMF	0.1399	0.1212	0.0451	0.0363	0.0258	0.0200
CMN	0.1405	0.1221	0.0457	0.0369	0.0267	0.0218
HOP-Rec	0.1399	0.1214	0.0517	0.0428	0.0309	0.0232
GC-MC	0.1395	0.1204	0.0462	0.0379	0.0288	0.0224
PinSage	0.1380	0.1196	0.0471	0.0393	0.0282	0.0219
NGCF-3	0.1569*	0.1327*	0.0579*	0.0477*	0.0337*	0.0261*
%Improv.	11.68%	8.64%	11.97%	11.29%	9.61%	12.50%
<i>p</i> -value	2.01e-7	3.03e-3	5.34e-3	4.62e-4	3.48e-5	1.26e-4

- Naïve factorization performed worst
 - Only shallow interactions are taken into account

	Gowalla		Yelp2	2018*	Amazon-Book		
	recall	ndcg	recall	ndcg	recall	ndcg	
MF	0.1291	0.1109	0.0433	0.0354	0.0250	0.0196	
NeuMF	0.1399	0.1212	0.0451	0.0363	0.0258	0.0200	
CMN	<u>0.1405</u>	0.1221	0.0457	0.0369	0.0267	0.0218	
HOP-Rec	0.1399	0.1214	0.0517	0.0428	0.0309	0.0232	
GC-MC	0.1395	0.1204	0.0462	0.0379	0.0288	0.0224	
PinSage	0.1380	0.1196	0.0471	0.0393	0.0282	0.0219	
NGCF-3	0.1569*	0.1327*	0.0579*	0.0477*	0.0337*	0.0261*	
%Improv.	11.68%	8.64%	11.97%	11.29%	9.61%	12.50%	
<i>p</i> -value	2.01e-7	3.03e-3	5.34e-3	4.62e-4	3.48e-5	1.26e-4	

- Memory or GCN-based were generally better
 - Memory-based (attending w.r.t. similarity), GCN (heuristic weighting)

	Gowalla		Yelpź	Yelp2018*		Amazon-Book	
	recall	ndcg	recall	ndcg	recall	ndcg	
MF	0.1291	0.1109	0.0433	0.0354	0.0250	0.0196	
NeuMF	0.1399	0.1212	0.0451	0.0363	0.0258	0.0200	
CMN	0.1405	0.1221	0.0457	0.0369	0.0267	0.0218	
HOP-Rec	0.1399	0.1214	0.0517	0.0428	0.0309	0.0232	
GC-MC	0.1395	0.1204	0.0462	0.0379	0.0288	0.0224	
PinSage	0.1380	0.1196	0.0471	0.0393	0.0282	0.0219	
NGCF-3	0.1569*	0.1327*	0.0579*	0.0477*	0.0337*	0.0261*	
%Improv.	11.68%	8.64%	11.97%	11.29%	9.61%	12.50%	
<i>p</i> -value	2.01e-7	3.03e-3	5.34e-3	4.62e-4	3.48e-5	1.26e-4	

- Models with high-order propagation were generally better
 - But HOP-Rec heavily depends on random walk

	Gowalla		Yelp2	2018*	Amazon-Book	
	recall	ndcg	recall	ndcg	recall	ndcg
MF	0.1291	0.1109	0.0433	0.0354	0.0250	0.0196
NeuMF	0.1399	0.1212	0.0451	0.0363	0.0258	0.0200
CMN	<u>0.1405</u>	0.1221	0.0457	0.0369	0.0267	0.0218
HOP-Rec	0.1399	0.1214	0.0517	0.0428	0.0309	0.0232
GC-MC	0.1395	0.1204	0.0462	0.0379	0.0288	0.0224
PinSage	0.1380	0.1196	0.0471	0.0393	0.0282	0.0219
NGCF-3	0.1569*	0.1327*	0.0579*	0.0477*	0.0337*	0.0261*
%Improv.	11.68%	8.64%	11.97%	11.29%	9.61%	12.50%
<i>p</i> -value	2.01e-7	3.03e-3	5.34e-3	4.62e-4	3.48e-5	1.26e-4

Experiment - Sparsity

- Four user groups with same total interactions
 - ex. ~3% of users account for 25% of interaction
 - Huge discrepancy between interactive and non-interactive group (~2x)

Experiment - Sparsity

- Four user groups with same total interactions
 - ex. ~3% of users account for 25% of interaction
 - Huge discrepancy between interactive and non-interactive group (~2x)
 - Performance gap widens for non-interactive groups

- Number of layers
 - NGCF-1 outperforms previous SotA
 - NGCF-4 displays signal of overfitting

	Gowalla		Yelp2	2018*	Amazon-Book		
	recall	ndcg	recall	ndcg	recall	ndcg	
NGCF-1	0.1556	0.1315	0.0543	0.0442	0.0313	0.0241	
NGCF-2	0.1547	0.1307	0.0566	0.0465	0.0330	0.0254	
NGCF-3	0.1569	0.1327	0.0579	0.0477	0.0337	0.0261	
NGCF-4	0.1570	0.1327	0.0566	0.0461	0.0344	0.0263	
CMN	0.1405	0.1221	0.0457	0.0369	0.0267	0.0218	
HOP-Rec	0.1399	0.1214	0.0517	0.0428	0.0309	0.0232	

- Propagation Mechanism
 - Variants of NGCF-1
 - NGCF without transformation matrix & activation (SVD++)

$$\hat{y}_{\text{NGCF-SVD}} = \left(\mathbf{e}_{u} + \sum_{i' \in \mathcal{N}_{u}} p_{ui'} \mathbf{e}_{i'}\right)^{\mathsf{T}} \left(\mathbf{e}_{i} + \sum_{u' \in \mathcal{N}_{i}} p_{iu'} \mathbf{e}_{i}\right)$$
$$\hat{r}_{ui} = \mu + b_{i} + b_{u} + \left|q_{i}^{T}\left(p_{u} + |\mathbf{R}(u)|^{-\frac{1}{2}} \sum_{j \in \mathbf{R}(u)} y_{j}\right)\right|$$

- Propagation Mechanism
 - Variants of NGCF-1
 - NGCF without transformation matrix & activation (SVD++)
 - NGCF with GraphConv style message construction (GC-MC, PinSage)
 - NGCF-1 outperforms the rest

, -	$\mu_{j \to i,r}$	=	$\frac{1}{c_{ij}}W_r x_j$
			-

	Gowalla		Yelp2	2018^{*}	Amazon-Book	
	recall	ndcg	recall	ndcg	recall	ndcg
NGCF-1	0.1556	0.1315	0.0543	0.0442	0.0313	0.0241
NGCF-1 _{SVD++}	0.1517	0.1265	0.0504	0.0414	0.0297	0.0232
NGCF-1 _{GC-MC}	0.1523	0.1307	0.0518	0.0420	0.0305	0.0234
NGCF-1 _{PinSage}	0.1534	0.1308	0.0516	0.0420	0.0293	0.0231

- Propagation Mechanism
 - Variants of NGCF-1
 - NGCF without transformation matrix & activation & item normalization (SVD++)
 - NGCF with GraphConv style message construction (GC-MC, PinSage)
 - NGCF-1 outperforms the rest
 - GraphConv variants outperforms original counterparts

		Gow	Gowalla		Yelp2018*		Amazon-Book	
		recall	ndcg	recall	ndcg	recall	ndcg	
NGC	F-1	0.1556	0.1315	0.0543	0.0442	0.0313	0.0241	
NGC	F-1 _{SVD++}	0.1517	0.1265	0.0504	0.0414	0.0297	0.0232	
NGC	F-1 _{GC-MC}	0.1523	0.1307	0.0518	0.0420	0.0305	0.0234	
NGC	F-1 _{PinSage}	0.1534	0.1308	0.0516	0.0420	0.0293	0.0231	
	GC-MC	0.1395	0.1204	0.0462	0.0379	0.0288	0.0224	
	PinSage	0.1380	0.1196	0.0471	0.0393	0.0282	0.0219	

- Node & Message Dropout
 - <u>Node dropout</u> is generally better than message dropout
 - Optimal value varies w.r.t. dataset
 - (Note: optimal setup was 0.1 MD w/o ND)

- Convergence
 - NGCF converges faster than MF
 - More interactions are involved in a single batch

Experiment - Qualitative

Conclusion

Conclusion

Contribution

- Importance of explicit exploitation of collaborative signal in embeddings
- NGCF framework via embedding propagation
- State-of-the-Art performance on 3 datasets
- Extension
 - NGCF with attention, adversarial learning, etc.
 - Application to other domains with structural knowledge

Thank You

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, Tat-Seng Chua. Neural Graph Collaborative Filtering. In SIGIR 2019.

Appendix

Experiment Configuration

Setup

- Three propagation layers
- Embedding size=64
- Batch size=1024
- Xavier initialization
- Node dropout=0.0 / Message dropout=0.1
- Hyperparameter optimization via grid search
- Early stopping w.r.t. recall@20