SELF-ATTENTIVE SEQUENTIAL RECOMMENDATION(ICDM, 2018)

2021-06-07 지능정보융합학과 이원도

SELF-ATTENTIVE SEQUENTIAL RECOMMENDATION

Intro

- temporal/sequential RS
- attention mechanism

SASRec

- model, training
- discussion

Experiments & Evaluation

- performance evaluation, abalation study
- visualizing attention weights

I.INTRO

General RS

• Matrix Factorization, Item Similarity, recent trend of using Deep Learning

Temporal RS

• TimeSVD++, concepts such as temporal 'drift',

Sequential RS

- model sequential patterns, context
- Markov Chains : most are first order transitions model, some are high order models, MCs are effective in sparse data
- RNNs : deep learning models such as GRU4Rec, recurrent structure, effective in dense data

I.INTRO

Attention Mechanism

- Effective use in image captioning, machine translation tasks
- Idea is to let each component focus on relevant parts of input
- Somewhat interpretable
- Recently, it is used additionally on existing recommender systems
- Recent NLP sota Transformer model relies purely on 'self-attention'
- \rightarrow inspired by Transformer, new sequential RS model SASRec based on self-attention is proposed

- SASRec model overview Prediction layer
 - ↑ Self-attn block (b)
 - • •
 - ↑ Self-attn block (I)
 - ↑ Embedding layer
 - ↑ Input
- Training
 Input : [a, b, c, d]
 → Want Output : [b, c, d, e]

Table I: Notation.							
Notation	Description						
\mathcal{U},\mathcal{I} \mathcal{S}^{u}	user and item set historical interaction sequence for a user u : $(S_1^u, S_2^u,, S_{ S^u }^u)$						
$d \in \mathbb{N}$ $n \in \mathbb{N}$ $b \in \mathbb{N}$	latent vector dimensionality maximum sequence length number of self-attention blocks						
$\mathbf{M} \in \mathbb{R}^{ \mathcal{I} \times d}$ $\mathbf{P} \in \mathbb{R}^{n \times d}$ $\widehat{\mathbf{F}} \in \mathbb{P}^{n \times d}$	item embedding matrix positional embedding matrix						
$\mathbf{S}^{(b)} \in \mathbb{R}^{n \times d}$ $\mathbf{F}^{(b)} \in \mathbb{R}^{n \times d}$	item embeddings after the b -th self-attention layer item embeddings after the b -th feed-forward network						

• Input

Data : user's action sequence $S^{u} = (S_{1}^{u}, S_{2}^{u}, ..., S_{|S^{u}|}^{u})$

- Set maximum length of input : n
 If data is greater than n, use most recent n,
 If data is shorter than n, use padding to the left
- $\mathsf{ExI}: s = (s_1, s_2, \dots s_n)$
- $Ex2: s = (0, 0, ..., 0, s_{n-1}, s_n)$

Embedding Layer

Embed input s with item embedding matrix $M \in R^{|I| \times d}$

$$s = (s_1, s_2, \dots s_n)^t$$

$$\rightarrow E = (e_1, e_2, \dots, e_n)^t, \text{ where } e_i \in \mathbb{R}^d$$

Positional Embedding

Model don't have positional components \rightarrow (learnable) position parameter *P* is added $E = (e_1, e_2, \dots, e_n)^t$ $\rightarrow \hat{E} = (e_1 + P_1, \dots, e_n + P_n)^t$, where $P_i \in \mathbb{R}^d$

- Self-Attn Block(= Self-Attn layer + Feed Forward)
- Definition of Attention

$$\mathsf{Attn}(Q, K, V) = \mathsf{softmax}(\frac{QK^T}{\sqrt{d}})V$$

• Self-Attn Layer

$$\begin{split} \widehat{E} &= (\widehat{e_1}, \dots, \widehat{e_n})^t \\ &\to \mathsf{Self}\mathsf{-}\mathsf{Attn}(\widehat{E}) = \mathsf{Attn}(\widehat{E}W^Q, \widehat{E}W^K, \widehat{E}W^V) \\ &\text{where } W^Q, W^K, W^V \in R^{d \times d} \end{split}$$

- Self-Attn Layer $\widehat{E} = (\widehat{e_1}, \dots, \widehat{e_n})^t$ $\hat{E} = \begin{bmatrix} \widehat{e_1} \\ \widehat{e_2} \\ \widehat{e_3} \end{bmatrix}$
- \rightarrow Self-Attn $(\hat{E}) =$ Attn $(\hat{E}W^Q, \hat{E}W^K, \hat{E}W^V) =$ Attn $(\hat{E}_Q, \hat{E}_K, \hat{E}_V)$ = softmax $(\frac{\hat{E}Q\hat{E}K^T}{\sqrt{d}})\hat{E}_V$

$$= seft_{\max} \left[\begin{array}{c} e_{q_1} \\ e_{q_2} \\ e_{q_3} \end{array} \right] \left[\begin{array}{c} e_{k_1} \\ e_{k_2} \\ e_{q_3} \end{array} \right] \left[\begin{array}{c} e_{k_1} \\ e_{k_2} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_1} \\ e_{k_2} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_1} \\ e_{k_2} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3} \\ e_{k_3} \\ e_{k_3} \end{array} \right] \left[\begin{array}{c} e_{k_2} \\ e_{k_3} \\ e_{k_3}$$

- Self-Attn Block(= Self-Attn layer + Feed Forward)
- Definition of Attention

$$\mathsf{Attn}(Q, K, V) = \mathsf{softmax}(\frac{QK^T}{\sqrt{d}})V$$

• Self-Attn Layer

$$\begin{split} \widehat{E} &= (\widehat{e_1}, \dots, \widehat{e_n})^t \\ &\to \mathsf{Self}\mathsf{-}\mathsf{Attn}(\widehat{E}) = \mathsf{Attn}(\widehat{E}W^Q, \widehat{E}W^K, \widehat{E}W^V) \\ &\text{where } W^Q, W^K, W^V \in R^{d \times d} \end{split}$$

Self-Attn layer - Causality

 → to predict 't+ I' item, only use first 't' items
 Modify by forbidding links between Q_i, K_j where (i < j)

• Self-Attn Layer $\widehat{E} = (\widehat{e_1}, \dots, \widehat{e_n})^t$ $\widehat{E} = \begin{bmatrix} \widehat{e_1} \\ \widehat{e_2} \\ \widehat{e_3} \end{bmatrix}$

•
$$\rightarrow$$
 Self-Attn $(\hat{E}) =$ Attn $(\hat{E}W^Q, \hat{E}W^K, \hat{E}W^V) =$ Attn $(\hat{E}_Q, \hat{E}_K, \hat{E}_V)$
= softmax $(\frac{\hat{E}_Q \hat{E}_K}{\sqrt{d}}) \hat{E}_V$

Self-Attn Block(= Self-Attn layer + Feed Forward)

• Attn layer is linear layer

 \rightarrow Apply pointwise non-linearity to attn layer result

• Attn($\widehat{E}W^Q$, $\widehat{E}W^K$, $\widehat{E}W^V$) = S = (s₁, s₂, ..., s_n) \rightarrow FFN(S_i) = ReLU(S_iW₁ + b₁)W₂ + b₂ = F_i

- Stacking Self-Attention Blocks stack multiple self-attn blocks *b* times
 $$\begin{split} \mathbf{S}^{(b)} &= \mathrm{SA}(\mathbf{F}^{(b-1)}), \\ \mathbf{F}_{i}^{(b)} &= \mathrm{FFN}(\mathbf{S}_{i}^{(b)}), \ \forall i \in \{1, 2, \dots, n\}, \end{split}$$
- But deeper network leads to overfitting, unstability, etc. Hence use,

g'(x) = x + Dropout(g(LayerNorm(x))),

- residual connections
 - direct use of lower level feature is useful
- layer normalization
 - for stabilize
- dropout
 - prevent overfitting

• Prediction Layer predict t+l items with final $F_t^{(b)}$ $N \in R^{|I| \times d}$ is item embed matrix

 $r_{i,t} = \mathbf{F}_t^{(b)} \mathbf{N}_i^T,$

• Shared Item Embedding Reuse initial item embed matrix *M*

$$r_{i,t} = \mathbf{F}_t^{(b)} \mathbf{M}_i^T.$$

• Explicit User Modeling But does not bring improvement $r_{u,i,t} = (\mathbf{U}_u + \mathbf{F}_t^{(b)})\mathbf{M}_i^T$

• Training

Data : $[S_1^u, S_2^u, ..., S_{|S^u|-1}^u]$ Input : $s = [s_1, s_2, ..., s_n]$ Output

 $o_t = \begin{cases} <\texttt{pad}> & \text{if } s_t \text{ is a padding item} \\ s_{t+1} & 1 \leq t < n \\ \mathcal{S}^u_{|\mathcal{S}^u|} & t = n \end{cases}$

• Loss : binary cross entropy loss

$$\sum_{\mathcal{S}^u \in \mathcal{S}} \sum_{t \in [1,2,\dots,n]} \left[\log(\sigma(r_{o_t,t})) + \sum_{j \notin \mathcal{S}^u} \log(1 - \sigma(r_{j,t})) \right]$$

Complexity analysis

- Space Complexity(# of params)
- - $O(|I|d + nd + d^2)$, does not grow with number of users(not bad)

Time Complexity

- - $O(n^2d + nd^2)$, where self-attn is dominant term
- - however computation is parallelizable(very good), 10 times faster than RNN models

Problem : Can't Scale to Very Long Sequence

• - solution 1) use restricted self-attn, solution 2) split into shorter sequence

Compared with Markov Chain-based RS

- - by removing all attn-block, pos embedding \rightarrow SASRec reduces to MC model
- first order MCs perform well on sparse datasets, but higher order MCs does not show big improvement
- SASRec shows flexible attention to recent & distant items

Compared with RNN-based RS

- - RNNs are suited to modeling sequences, but can't parallel compute
- - self-attention model is gaining popularity, also can parallel compute
- - RNN has O(n) maximum path length(from input node to related output node), SASRec has O(1) maximum path length, and can learn long-range dependencies

Evaluation

- Datasets & Preprocess
 - sparse : Amazon Beauty, Amazon Games,
 - dense : Steam, MovieLens

Table II: Dataset statistics (after preprocessing)

Dataset	#users	#items	avg. actions /user	avg. actions /item	#actions
Amazon Beauty	52,024	57,289	7.6	6.9	0.4M
Amazon Games	31,013	23,715	9.3	12.1	0.3M
Steam	334,730	13,047	11.0	282.5	3.7M
MovieLens-1M	6,040	3,416	163.5	289.1	1.0M

• Preprocess

I) treat review, rating as implicit user-item feedback

2) use timestamps to determine sequence

3) discard users, items with fewer than 5 interaction

4) for sequence of length k,

split train : $I \sim k-2$, val : k-1, test : k

Implementation Details

Two self-attn blocks, learnable position embeddings, shared item embedding weights in input / predict layer

- Comparison models
 - general : PopRec, Bayesian Personalized Ranking
 - MC based* : FMC, FPMC, TransRec
 - DL based : GRU4Rec, GRU4Rec+, Caser
 - models such as timeSVD++ is not considered
- Evaluation metrics
 - Hit Rate@10, NDCG@10 with 100 random negative samples

FMC : Factorized Markov Chain FPMC : Factorized Personalized Markov Chain TransRec :Translation-based Recommendation

- Markov Chain based performs well on sparse data
- DL based performs well on dense data

Table III: Recommendation performance. The best performing method in each row is boldfaced, and the second best method in each row is underlined. Improvements over non-neural and neural approaches are shown in the last two columns respectively.

Dataset	Metric	(a) PopRec	(b) BPR	(c) FMC	(d) FPMC	(e) TransRec	(f) GRU4Rec	(g) GRU4Rec ⁺	(h) Caser	(i) SASRec	Improve (a)-(e)	ment vs. (f)-(h)
Beauty	Hit@10	0.4003	0.3775	0.3771	0.4310	0.4607	0.2125	0.3949	0.4264	0.4854	5.4%	13.8%
	NDCG@10	0.2277	0.2183	0.2477	0.2891	0.3020	0.1203	0.2556	0.2547	0.3219	6.6%	25.9%
Games	Hit@10	0.4724	0.4853	0.6358	0.6802	0.6838	0.2938	0.6599	0.5282	0.7410	8.5%	12.3%
	NDCG@10	0.2779	0.2875	0.4456	0.4680	0.4557	0.1837	0.4759	0.3214	0.5360	14.5%	12.6%
Steam	Hit@10	0.7172	0.7061	0.7731	0.7710	0.7624	0.4190	0.8018	0.7874	0.8729	13.2%	8.9%
	NDCG@10	0.4535	0.4436	0.5193	0.5011	0.4852	0.2691	0.5595	0.5381	0.6306	21.4%	12.7%
ML-1M	Hit@10	0.4329	0.5781	0.6986	0.7599	0.6413	0.5581	0.7501	0.7886	0.8245	8.5%	4.6%
	NDCG@10	0.2377	0.3287	0.4676	0.5176	0.3969	0.3381	0.5513	0.5538	0.5905	14.1%	6.6%

• Increasing hidden dimension d shows consistent improvement

Figure 2: Effect of the latent dimensionality d on ranking performance (NDCG@10).

- SASRec shows faster and efficient training compared to other models (left)
- SASRec can easily scale for longer sequence length n (right)

Table V: Scalability: performance and training time with different maximum length n on *ML-1M*.

n	10	50	100	200	300	400	500	600	
Time(s)	75	101	157	341	613	965	1406	1895	
NDCG@10	0.480	0.557	0.571	0.587	0.593	0.594	0.596	0.595	

- Abalation Study
- I) Remove Positional Embedding
 - without pos emb, there is no order info for past item sequence
 - performance increases for sparse dataset, worsens for dense dataset
- 2) Unshared Item Embedding
 performance worsens, possibly overfitting
- 3) Remove Residual Connections
 - performance is slightly worse

Table IV: Ablation analysis (NDCG@10) on four datasets. Performance better than the default version is boldfaced. ' \downarrow ' indicates a severe performance drop (more than 10%).

Architecture	Beauty	Games	Steam	ML-1M
(0) Default(1) Remove PE(2) Unshared IE	0.3142 0.3183 0.2437	0.5360 0.5301 0.4266	0.6306 0.6036 0.4472	0.5905 0.5772 0.4557
 (2) Onshared H2 (3) Remove RC (4) Remove Dropout (5) 0 Block (b=0) (6) 1 Block (b=1) 	0.24371 0.25911 0.24361 0.26201 0.3066	0.4200↓ 0.4303↓ 0.4375↓ 0.4745↓ 0.5408	0.5693 0.5959 0.5588↓ 0.6202	0.5535 0.5801 0.48304 0.5653
(7) 3 Blocks $(b=3)$ (8) Multi-Head	0.3078 0.3080	0.5312	0.6275 0.6272	0.5931 0.5885

- Abalation Study
- 4) Remove Dropout
 performance worsens
- 5)-7) Number of blocks
 - 0 block is worst, 2~3 blocks shows similar performance
- 8) Multi-head attention
 - multi-head is worse than single-head, maybe because model is too small for multi-head

Table IV: Ablation analysis (NDCG@10) on four datasets. Performance better than the default version is boldfaced. ' \downarrow ' indicates a severe performance drop (more than 10%).

Architecture	Beauty	Games	Steam	ML-1M
(0) Default	0.3142	0.5360	0.6306	0.5905
Remove PE	0.3183	0.5301	0.6036	0.5772
(2) Unshared IE	0.2437↓	0.4266↓	0.4472↓	0.4557↓
(3) Remove RC	0.2591↓	0.4303↓	0.5693	0.5535
(4) Remove Dropout	0.2436↓	0.4375↓	0.5959	0.5801
(5) 0 Block (b=0)	0.2620↓	0.4745↓	0.5588↓	0.4830↓
(6) 1 Block (b=1)	0.3066	0.5408	0.6202	0.5653
(7) 3 Blocks (b=3)	0.3078	0.5312	0.6275	0.5931
(8) Multi-Head	0.3080	0.5311	0.6272	0.5885

Visualizing Attention Weights

Figure 4: Visualizations of average attention weights on positions at different time steps. For comparison, the heatmap of a first-order Markov chain based model would be a diagonal matrix.

- Visualizing Attention Weights
- (a),(c) : for beauty dataset, attention on recent item is enough compared to MovieLens
- \rightarrow shows why MC model can be effective & shows SASRec is adaptive
- (b),(c) : without positional information, attention is spread uniformly
- (c),(d) : attention varies for different blocks, Ist attn layer considers distant items, higher layer considers recent item

- Summary
- self attention based sequential model SASRec
- pos embedding layer, self-attn layer
- - models the entire sequence with self-attention, no recurrent element
- - faster, better performance
- Future works
- incorporate rich context information(dwell time, action types, locations, devices), long sequences(clicks)

MISC

- Personal thoughts on temporal / sequential recsys
- diverse dynamics, patterns can be observed and modelled compared to non-temporal models
- - especially data of different domains will show different patterns

감사합니다