
SELF-ATTENTIVE SEQUENTIAL
RECOMMENDATION(ICDM, 2018)

2021-06-07 지능정보융합학과 이원도

SELF-ATTENTIVE SEQUENTIAL
RECOMMENDATION
Intro

• temporal/sequential RS

• attention mechanism

SASRec

• model, training

• discussion

Experiments & Evaluation

• performance evaluation, abalation study

• visualizing attention weights

1. INTRO

General RS

• Matrix Factorization, Item Similarity, recent trend of using Deep Learning

Temporal RS

• TimeSVD++, concepts such as temporal ‘drift’,

Sequential RS

• model sequential patterns, context

• Markov Chains : most are first order transitions model, some are high order models, MCs are

effective in sparse data

• RNNs : deep learning models such as GRU4Rec, recurrent structure, effective in dense data

1. INTRO

Attention Mechanism

• Effective use in image captioning, machine translation tasks

• Idea is to let each component focus on relevant parts of input

• Somewhat interpretable

• Recently, it is used additionally on existing recommender systems

• Recent NLP sota Transformer model relies purely on ‘self-attention’

• → inspired by Transformer, new sequential RS model SASRec based on self-attention is

proposed

2. SASREC

• SASRec model overview

Prediction layer

↑ Self-attn block (b)

…

↑ Self-attn block (1)

↑ Embedding layer

↑ Input

• Training

Input : [a, b, c, d]

→Want Output : [b, c, d, e]

2. SASREC

2. SASREC

• Input

Data : user’s action sequence

𝑆𝑢 = (𝑆1
𝑢, 𝑆2

𝑢, … , 𝑆 𝑆𝑢
𝑢)

• Set maximum length of input : 𝑛

If data is greater than 𝑛, use most recent 𝑛,

If data is shorter than 𝑛, use padding to the left

• Ex1 : 𝑠 = (𝑠1, 𝑠2 , … 𝑠𝑛)

• Ex2 : 𝑠 = (0, 0, . . , 0, 𝑠𝑛−1, 𝑠𝑛)

2. SASREC

• Embedding Layer

Embed input 𝑠 with item embedding matrix 𝑀 ∈ 𝑅 𝐼 ×𝑑

𝑠 = 𝑠1, 𝑠2 , … 𝑠𝑛
𝑡

→ 𝐸 = 𝑒1, 𝑒2, … , 𝑒𝑛
𝑡, where 𝑒𝑖 ∈ 𝑅𝑑

• Positional Embedding

Model don’t have positional components

→ (learnable) position parameter 𝑃 is added

𝐸 = 𝑒1, 𝑒2, … , 𝑒𝑛
𝑡

→ 𝐸 = 𝑒1 + 𝑃1, … , 𝑒𝑛 + 𝑃𝑛
𝑡, where 𝑃𝑖 ∈ 𝑅𝑑

2. SASREC

• Self-Attn Block(= Self-Attn layer + Feed Forward)

• Definition of Attention

Attn(𝑄,𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

𝑑
)𝑉

• Self-Attn Layer
𝐸 = ෝ𝑒1, … ,ෞ𝑒𝑛

𝑡

→ Self-Attn(𝐸) = Attn(𝐸𝑊𝑄, 𝐸𝑊𝐾, 𝐸𝑊𝑉)

where 𝑊𝑄,𝑊𝐾,𝑊𝑉 ∈ 𝑅𝑑×𝑑

2. SASREC

• Self-Attn Layer

𝐸 = ෝ𝑒1, … ,ෞ𝑒𝑛
𝑡

• → Self-Attn(𝐸) = Attn(𝐸𝑊𝑄, 𝐸𝑊𝐾, 𝐸𝑊𝑉) = Attn(𝐸𝑄, 𝐸𝐾 , 𝐸𝑉)

= softmax(
𝐸𝑄 𝐸𝐾

𝑇

𝑑
) 𝐸𝑉

2. SASREC

• Self-Attn Block(= Self-Attn layer + Feed Forward)

• Definition of Attention

Attn(𝑄,𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

𝑑
)𝑉

• Self-Attn Layer
𝐸 = ෝ𝑒1, … ,ෞ𝑒𝑛

𝑡

→ Self-Attn(𝐸) = Attn(𝐸𝑊𝑄, 𝐸𝑊𝐾, 𝐸𝑊𝑉)

where 𝑊𝑄,𝑊𝐾,𝑊𝑉 ∈ 𝑅𝑑×𝑑

2. SASREC

• Self-Attn layer - Causality

→ to predict ‘t+1’ item, only use first ‘t’ items

Modify by forbidding links between 𝑄𝑖 , 𝐾𝑗 where (𝑖 < 𝑗)

2. SASREC

• Self-Attn Layer

𝐸 = ෝ𝑒1, … ,ෞ𝑒𝑛
𝑡

• → Self-Attn(𝐸) = Attn(𝐸𝑊𝑄, 𝐸𝑊𝐾, 𝐸𝑊𝑉) = Attn(𝐸𝑄, 𝐸𝐾 , 𝐸𝑉)

= softmax(
𝐸𝑄 𝐸𝐾

𝑇

𝑑
) 𝐸𝑉

2. SASREC

• Self-Attn Block(= Self-Attn layer + Feed Forward)

• Attn layer is linear layer

→ Apply pointwise non-linearity to attn layer result

• Attn(EWQ, EWK, EWV) = S = s1, s2, … , sn
→ FFN Si = ReLU SiW1 + b1 W2 + b2 = Fi

2. SASREC

• Stacking Self-Attention Blocks

stack multiple self-attn blocks 𝑏 times

• But deeper network leads to overfitting, unstability, etc. Hence use,

• residual connections

- direct use of lower level feature is useful

• layer normalization

- for stabilize

• dropout

- prevent overfitting

2. SASREC

• Prediction Layer

predict t+1 items with final 𝐹𝑡
(𝑏)

𝑁 ∈ 𝑅 𝐼 ×𝑑 is item embed matrix

• Shared Item Embedding

Reuse initial item embed matrix 𝑀

• Explicit User Modeling

But does not bring improvement

2. SASREC

• Training

Data : [𝑆1
𝑢, 𝑆2

𝑢, … , 𝑆 𝑆𝑢 −1
𝑢]

Input : 𝑠 = 𝑠1, 𝑠2, … , 𝑠𝑛
Output

-

• Loss : binary cross entropy loss

-

2. SASREC

Complexity analysis

• Space Complexity(# of params)

• - 𝑂 𝐼 𝑑 + 𝑛𝑑 + 𝑑2 , does not grow with number of users(not bad)

Time Complexity

• - 𝑂(𝑛2𝑑 + 𝑛𝑑2), where self-attn is dominant term

• - however computation is parallelizable(very good), 10 times faster than RNN models

Problem : Can’t Scale to Very Long Sequence

• - solution 1) use restricted self-attn, solution 2) split into shorter sequence

2. SASREC

Compared with Markov Chain-based RS

• - by removing all attn-block, pos embedding → SASRec reduces to MC model

• - first order MCs perform well on sparse datasets, but higher order MCs does not show big

improvement

• - SASRec shows flexible attention to recent & distant items

Compared with RNN-based RS

• - RNNs are suited to modeling sequences, but can’t parallel compute

• - self-attention model is gaining popularity, also can parallel compute

• - RNN has 𝑂(𝑛) maximum path length(from input node to related output node), SASRec has

𝑂(1) maximum path length, and can learn long-range dependencies

3. EXPERIMENTS & EVALUATION

• Evaluation

• Datasets & Preprocess

- sparse : Amazon Beauty, Amazon Games,

- dense : Steam, MovieLens

• Preprocess

1) treat review, rating as implicit user-item feedback

2) use timestamps to determine sequence

3) discard users, items with fewer than 5 interaction

4) for sequence of length 𝑘,

split train : 1 ~ k-2, val : k-1, test : k

• Implementation Details

Two self-attn blocks, learnable position embeddings, shared item embedding weights in input / predict

layer

3. EXPERIMENTS & EVALUATION

• Comparison models

- general : PopRec, Bayesian Personalized Ranking

- MC based* : FMC, FPMC, TransRec

- DL based : GRU4Rec, GRU4Rec+, Caser

- models such as timeSVD++ is not considered

• Evaluation metrics

- Hit Rate@10, NDCG@10 with 100 random negative samples

FMC : Factorized Markov Chain

FPMC : Factorized Personalized Markov Chain

TransRec : Translation-based Recommendation

3. EXPERIMENTS & EVALUATION

• Markov Chain based performs well on sparse data

• DL based performs well on dense data

3. EXPERIMENTS & EVALUATION

• Increasing hidden dimension 𝑑 shows consistent improvement

3. EXPERIMENTS & EVALUATION

• SASRec shows faster and efficient training compared to other models (left)

• SASRec can easily scale for longer sequence length 𝑛 (right)

3. EXPERIMENTS & EVALUATION

• Abalation Study

• 1) Remove Positional Embedding

- without pos emb, there is no order info for past item sequence

- performance increases for sparse dataset, worsens for dense dataset

• 2) Unshared Item Embedding

- performance worsens, possibly overfitting

• 3) Remove Residual Connections

- performance is slightly worse

3. EXPERIMENTS & EVALUATION

• Abalation Study

• 4) Remove Dropout

- performance worsens

• 5)-7) Number of blocks

- 0 block is worst, 2~3 blocks shows similar performance

• 8) Multi-head attention

- multi-head is worse than single-head, maybe because model is too small for

multi-head

3. EXPERIMENTS & EVALUATION

• Visualizing Attention Weights

3. EXPERIMENTS & EVALUATION

• Visualizing Attention Weights

• (a),(c) : for beauty dataset, attention on recent item is enough compared to MovieLens

• → shows why MC model can be effective & shows SASRec is adaptive

• (b),(c) : without positional information, attention is spread uniformly

• (c),(d) : attention varies for different blocks, 1st attn layer considers distant items, higher

layer considers recent item

3. EXPERIMENTS & EVALUATION

• Summary

• - self attention based sequential model SASRec

• - pos embedding layer, self-attn layer

• - models the entire sequence with self-attention, no recurrent element

• - faster, better performance

• Future works

• - incorporate rich context information(dwell time, action types, locations, devices), long

sequences(clicks)

MISC

• Personal thoughts on temporal / sequential recsys

• - diverse dynamics, patterns can be observed and modelled compared to non-temporal

models

• - especially data of different domains will show different patterns

감사합니다

