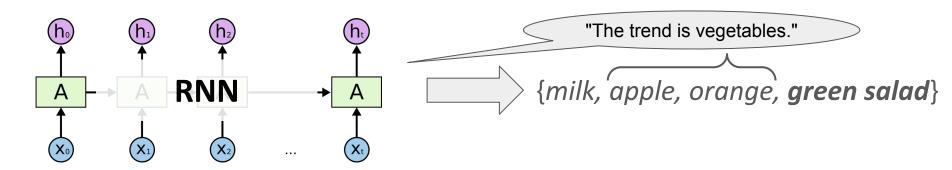
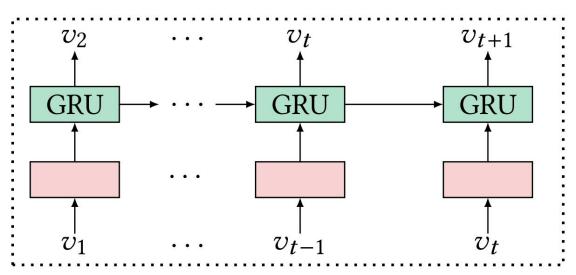
BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer


CIKM 2019

Authors: Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang
Presenter: Hyunwoo Jung

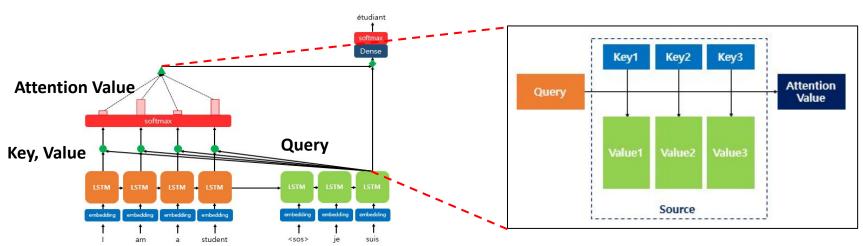
Motivation [1]

A user purchased {milk, apple, orange}
 What is the next product the user will buy?


 \Rightarrow The answer is **bread** to eat with milk.

Relevance between items is more important than the rigid order.

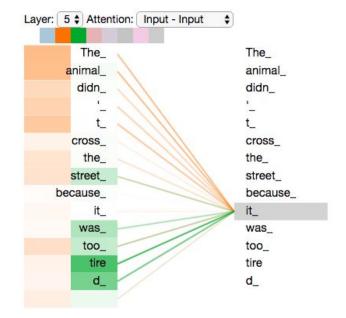
Prior Work 1: Unidirectional Models


- Originally proposed for NLP tasks.
- Unsuitable for noisy sequences such as transactions.

RNN based Model Architecture

Attention Mechanism

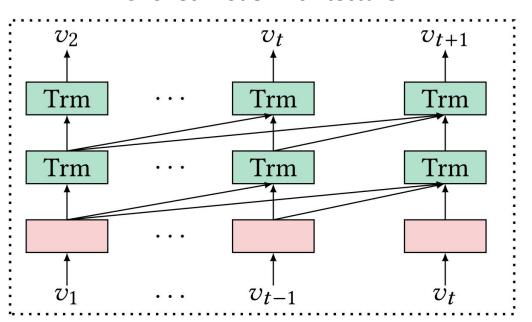
Attention Mechanism [2]



Self-Attention

Query, Key, Value from the Same Vector

Thinking Machines Input **Embedding** WQ Queries WK Keys WV Values


Relevance between Words Captured by Self-Attention

Prior Work 2: SASRec

Transformer-based unidirectional sequential recommendation model

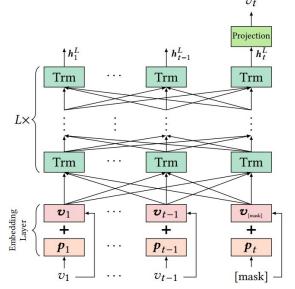
SASRec Model Architecture

BERT4REC Architecture

BERT4Rec Model Architecture Transformer Layer Architecture Add & Norm Projection h_{t-1}^L Dropout Trm Trm Trm residual connection Position-wise Feed-Forward LX Add & Norm Trm Trm Trm Dropout Embedding Multi-Head Attention learnable \boldsymbol{p}_{t-1} positional embedding

[mask]

input


Training

- Bidirectional architecture makes predicting the future trivial.
- Leverage Cloze task objective (Masked Language Model)

Cloze Task Objective

Input: $[v_1, v_2, v_3, v_4, v_5] \xrightarrow{\text{randomly mask}} [v_1, [\mathsf{mask}]_1, v_3, [\mathsf{mask}]_2, v_5]$ **Labels**: $[\mathsf{mask}]_1 = v_2$, $[\mathsf{mask}]_2 = v_4$

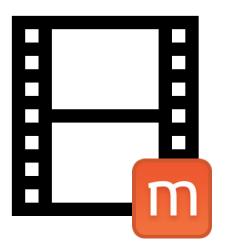
BERT4Rec Architecture

Datasets

Amazon Beauty

Product review

Steam


Game

MovieLens

Movie ratings

Metrics

Hit Ratio (HR) ≡ Recall

$$recall = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{relevant\ documents\}|}$$

Normalized Discounted Cumulative Gain (NDCG)

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^{p} rac{rel_i}{\log_2(i+1)} = rel_1 + \sum_{i=2}^{p} rac{rel_i}{\log_2(i+1)}$$

Mean Reciprocal Rank (MRR)

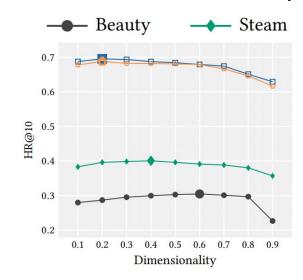
$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}.$$

Baselines

Method	Approach
POP	popularity-based
BPR-MF	Matrix Factorization + pairwise ranking loss
NCF	MLP-based
FPMC	Matrix Factorization + First-order Markov Chain
GRU4Rec	GRU-based
GRU3Rec+	GRU-based
Caser	CNN + high-order Markov Chain
SASRec	left-to-right Transformer model

Performance Comparison

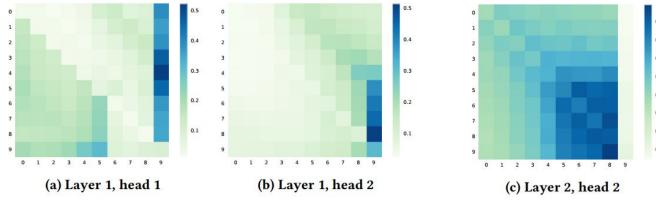
Datasets	Metric	POP	BPR-MF	NCF	FPMC	GRU4Rec	GRU4Rec ⁺	Caser	SASRec	BERT4Rec	Improv.
	HR@1	0.0077	0.0415	0.0407	0.0435	0.0402	0.0551	0.0475	0.0906	0.0953	5.19%
	HR@5	0.0392	0.1209	0.1305	0.1387	0.1315	0.1781	0.1625	0.1934	0.2207	14.12%
Doguter	HR@10	0.0762	0.1992	0.2142	0.2401	0.2343	0.2654	0.2590	0.2653	0.3025	14.02%
Beauty	NDCG@5	0.0230	0.0814	0.0855	0.0902	0.0812	0.1172	0.1050	0.1436	0.1599	11.35%
	NDCG@10	0.0349	0.1064	0.1124	0.1211	0.1074	0.1453	0.1360	0.1633	0.1862	14.02%
	MRR	0.0437	0.1006	0.1043	0.1056	0.1023	0.1299	0.1205	0.1536	0.1701	10.74%
	HR@1	0.0159	0.0314	0.0246	0.0358	0.0574	0.0812	0.0495	0.0885	0.0957	8.14%
	HR@5	0.0805	0.1177	0.1203	0.1517	0.2171	0.2391	0.1766	0.2559	0.2710	5.90%
Steam	HR@10	0.1389	0.1993	0.2169	0.2551	0.3313	0.3594	0.2870	0.3783	0.4013	6.08%
Steam	NDCG@5	0.0477	0.0744	0.0717	0.0945	0.1370	0.1613	0.1131	0.1727	0.1842	6.66%
	NDCG@10	0.0665	0.1005	0.1026	0.1283	0.1802	0.2053	0.1484	0.2147	0.2261	5.31%
	MRR	0.0669	0.0942	0.0932	0.1139	0.1420	0.1757	0.1305	0.1874	0.1949	4.00%
	HR@1	0.0141	0.0914	0.0397	0.1386	0.1583	0.2092	0.2194	0.2351	0.2863	21.78%
	HR@5	0.0715	0.2866	0.1932	0.4297	0.4673	0.5103	0.5353	0.5434	0.5876	8.13%
ML-1m	HR@10	0.1358	0.4301	0.3477	0.5946	0.6207	0.6351	0.6692	0.6629	0.6970	4.15%
MIL-IIII	NDCG@5	0.0416	0.1903	0.1146	0.2885	0.3196	0.3705	0.3832	0.3980	0.4454	11.91%
	NDCG@10	0.0621	0.2365	0.1640	0.3439	0.3627	0.4064	0.4268	0.4368	0.4818	10.32%
	MRR	0.0627	0.2009	0.1358	0.2891	0.3041	0.3462	0.3648	0.3790	0.4254	12.24%
	HR@1	0.0221	0.0553	0.0231	0.1079	0.1459	0.2021	0.1232	0.2544	0.3440	35.22%
	HR@5	0.0805	0.2128	0.1358	0.3601	0.4657	0.5118	0.3804	0.5727	0.6323	10.41%
ML-20m	HR@10	0.1378	0.3538	0.2922	0.5201	0.5844	0.6524	0.5427	0.7136	0.7473	4.72%
WIL-ZUIII	NDCG@5	0.0511	0.1332	0.0771	0.2239	0.3090	0.3630	0.2538	0.4208	0.4967	18.04%
	NDCG@10	0.0695	0.1786	0.1271	0.2895	0.3637	0.4087	0.3062	0.4665	0.5340	14.47%
	MRR	0.0709	0.1503	0.1072	0.2273	0.2967	0.3476	0.2529	0.4026	0.4785	18.85%

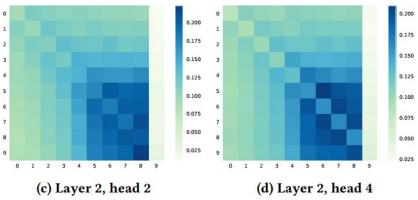

Gain of Cloze Objective

- Cloze objective improves the performances.
- The mask proportion should not be too small or big.

Performance with/without Cloze Objective

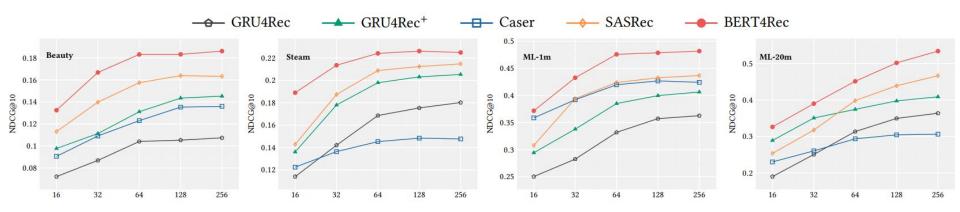
Model		Beauty		ML-1m			
1110001	HR@10	NDCG@10	MRR	HR@10	NDCG@10	MRR	
SASRec	0.2653	0.1633	0.1536	0.6629	0.4368	0.3790	
BERT4Rec (1 mask)	0.2940	0.1769	0.1618	0.6869	0.4696	0.4127	
BERT4Rec	0.3025	0.1862	0.1701	0.6970	0.4818	0.4254	


Performance with Different Mask Proportion



Effect of Bidirectional Model Architecture

- Attention varies across different heads/layers.
- BERT4Rec can attend on the items at both sides.


Heat-maps of Average Attention Weights on Amazon Beauty Dataset

Effect of the Hidden Dimensionality

• The performance converge as the dimensionality increases.

Impact of Maximum Sequence Length

- A user's behavior is affected by
 - more recent items (short sequence)
 - less recent items (long sequence)

			10	20	30	40	50
short sequence	Beauty	#samples/s HR@10 NDCG@10	5504 0.3006 0.1826	3256 0.3061 0.1875	2284 0.3057 0.1837	1776 0.3054 0.1833	1441 0.3047 0.1832
			10	50	100	200	400

Summary

 Deep bidirectional self-attention architecture shows high performance on sequential recommendation.

Cloze task improves the performance.

References

- [1] Attention-Based Transactional Context Embedding for Next-Item Recommendation, AAAI '18
- [2] <u>https://wikidocs.net/22893</u>
- [3] https://jalammar.github.io/illustrated-transformer/

Thank You Q & A