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Motivation

e How to build an efficient location-aware recommendation system?
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Related Works

® Location-based services
o Ex1) "local favorites" of Netflix
o Ex2) Hyper-local place ranking
(user location, location-related-query) = top points of interest

= Doesn't provide personalized recommendations.

® Geo-measured friend-based collaborative filtering
= Large-scale real-world deployment is not considered.
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Types of Location-based Ratings

® Spatial ratings for non-spatial items
(user, user location, rating, item)
ex) A user located at home rating a book.
e Non-spatial ratings for spatial items
(user, rating, item, item location)
ex) A user with unknown location rating a restaurant.
® Spatial ragins for spatial items
(user, user location, rating, item, item location)
ex) A user at his/her office rating a restaurant visited for lunch.
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Observation: Preference Locality

e Usersin aregion share interests.
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Users from:

Visited venues in:

% Visits

U.S. State Top Movie Genres | Avg. Rating
I\‘Iinnesota Film-NOir 3.8
War 3.7
Drama 3.6
Documentary 3.6
Wisconsin War 4.0
Film-Noir 4.0
Mystery 3.9
Romance 3.8
Florida Fantansy 4.3
Animation 4.1
War 4.0
Musical 4.0

Edina, MIN Minneapolis , MN 37 %
Edina , MIN 59 %

Eden Prarie , MIN 5%

Robbinsdale, MIN | Brooklyn Park, MN 32 %
Robbinsdale, MIN 20 %

Minneapolis, MN 15 %

Falcon Heights, St. Paul, MIN 17 %
MN Minneapolis, MN | 13 %
Roseville, MIN 10 %

(a) Movielens preference locality
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(b) Foursquare preference locality




Observation: Travel Locality

e Users prefer to travel a limited distance.

o From Foursquare data analysis:
m 45% of users travel 10 miles or less
m 75% of users travel 50 miles or less
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LARS: A Location-Aware Recommender

® LARS: Efficient and scalable Location-aware recommender system
that uses location-based ratings.

e Two main considerations/components:

o Preference locality < user partitioning
m Collaborative filter utilizing ratings only located in the querying user's region.
o Travel locality < travel penalty



Partial Pyramid for User Partitioning

® LARS employs a partial pyramid for user partitioning.

e Foragiven level h, the space is partitioned into 4" equal area.

e FEach cell contains an item-based collaborative filtering model for
corresponding region.

Model |CID _/%._Entire System Area (level 0)

2x2 Grid (level 1)

N.\,\Q\x4 Grid (level 2)
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", .8x8 Grid (level 3)
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Balancing Scalability/Locality

e Challenge: How to balance scalability and locality of partial pyramid?

o Maintains a large number of regions increases both locality (higher the better)
and scalability (lower the better).

e Solution: Merging/Split maintenance algorithm

o scalability_gain < locality_loss = split the pyramid cell
o scalability_gain > locality _loss = merge the pyramid cells
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Travel Penalty for Travel Locality
® Approach: RecScore(u,i) = P(u,i) — Travel Penalty(u,1)

® Challenge: Computational complexity of calculating
TravelPenalty(u, i) for all items online is too high. O(k+logN)

e Solution: Partition space into grids, and compute the TravelPenelty of
each grid and items offline.
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Datasets for Experiments

e Foursquare data
o Data crawled from Foursquare application, a location-based SNS.
o Contains user notes for venues.

® Movielens data
o Movie rating data taken from Movielens.

e Synthetic data
o Random data for testing scalability and query efficiency.
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Evaluation

Quality

LARS surpasses collaborative filter.
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Scalability-Locality Tradeoff

e Scalability-locality tradeoff of partial pyramid
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Snapshot vs Continuous Queries

® LARS reduces the response time of naive approaches.
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Summary

® LARS is the first location-aware recommender system to consider
implicit preferences considering user/travel locality.

® LARS effectively leverages computational resources which enables
real-world deployment.
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