LARS: A Location-Aware Recommender System

Authors: Justin J. Levandoski, Mohamed Sarwat, Ahmed Eldawy, Mohamed F. Mokbel Presenter: <u>Hyunwoo Jung</u>

Motivation

ICSL.

• How to build an efficient location-aware recommendation system?

Related Works

- Location-based services
 - Ex1) "local favorites" of Netflix
 - Ex2) Hyper-local place ranking
 (user location, location-related-query) ⇒ top points of interest
 - \Rightarrow Doesn't provide personalized recommendations.
- Geo-measured friend-based collaborative filtering
 ⇒ Large-scale real-world deployment is not considered.

Types of Location-based Ratings

- Spatial ratings for non-spatial items (user, user location, rating, item)
 ex) A user located at home rating a book.
- Non-spatial ratings for spatial items

 (user, rating, item, item location)
 ex) A user with unknown location rating a restaurant.
- Spatial ragins for spatial items

(user, user location, rating, item, item location)

ex) A user at his/her office rating a restaurant visited for lunch.

Observation: Preference Locality

• Users in a region share interests.

U.S. State	Top Movie Genres	Avg. Rating
Minnesota	Film-Noir	3.8
	War	3.7
	Drama	3.6
	Documentary	3.6
Wisconsin	War	4.0
	Film-Noir	4.0
	Mystery	3.9
	Romance	3.8
Florida	Fantansy	4.3
	Animation	4.1
	War	4.0
	Musical	4.0

Users from:	Visited venues in:	% Visits
Edina, MN	Minneapolis , MN	37 %
	Edina , MN	59 %
	Eden Prarie, MN	5 %
Robbinsdale, MN	Brooklyn Park, MN	32 %
	Robbinsdale, MN	20 %
	Minneapolis, MN	15 %
Falcon Heights, MN	St. Paul, MN	17 %
	Minneapolis, MN	13 %
	Roseville, MN	10 %

(a) Movielens preference locality

(b) Foursquare preference locality

Computer Systems Lab

Observation: Travel Locality

- Users prefer to travel a limited distance.
 - From Foursquare data analysis:
 - 45% of users travel 10 miles or less
 - 75% of users travel 50 miles or less

LARS: A Location-Aware Recommender

- LARS: Efficient and scalable Location-aware recommender system that uses location-based ratings.
- Two main considerations/components:
 - Preference locality \leftarrow *user partitioning*
 - Collaborative filter utilizing ratings only located in the querying user's region.
 - Travel locality \leftarrow *travel penalty*

Partial Pyramid for User Partitioning

- LARS employs a partial pyramid for user partitioning.
- For a given level *h*, the space is partitioned into 4^{*h*} equal area.
- Each cell contains an item-based collaborative filtering model for corresponding region.

Balancing Scalability/Locality

- Challenge: How to balance scalability and locality of partial pyramid?
 - Maintains a large number of regions increases both *locality (higher the better)* and *scalability (lower the better)*.
- Solution: Merging/Split maintenance algorithm
 - scalability_gain < locality_loss \Rightarrow split the pyramid cell
 - \circ scalability_gain > locality_loss \Rightarrow merge the pyramid cells

Travel Penalty for Travel Locality

- Approach: RecScore(u, i) = P(u, i) TravelPenalty(u, i)
- Challenge: Computational complexity of calculating *TravelPenalty(u, i)* for all items online is too high. O(k+logN)
- Solution: Partition space into grids, and compute the *TravelPenelty* of each grid and items offline.

Datasets for Experiments

- Foursquare data
 - Data crawled from Foursquare application, a location-based SNS.
 - Contains user notes for venues.
- MovieLens data
 - Movie rating data taken from MovieLens.
- Synthetic data
 - Random data for testing scalability and query efficiency.

Evaluation

• LARS surpasses collaborative filter.

Scalability-Locality Tradeoff

• Scalability-locality tradeoff of partial pyramid

Snapshot vs Continuous Queries

• LARS reduces the response time of naive approaches.

Summary

- LARS is the first location-aware recommender system to consider implicit preferences considering user/travel locality.
- LARS effectively leverages computational resources which enables real-world deployment.

Thank You Q & A

