LARS

: A Location-Aware Recommender System

데이터사이언스대학원 석사과정 최영은

CONTENTS

Abstract

Introduction

Spatial User Ratings for Non-Spatial Items

Non-Spatial User Ratings for Spatial Items

Experiments

Conclusions

Abstract

- A taxonomy of three novel classes of location-based ratings
 - 1) Spatial ratings for non-spatial items (MovieLens)
 - 2) Non-spatial ratings for spatial items
 - 3) Spatial ratings for spatial items (Foursquare)
- User partitioning
 - exploiting user rating locations
- Travel penalty
 - exploiting item locations

Introduction

- A taxonomy of three novel classes of location-based ratings
 - 1) Spatial ratings for non-spatial items (user, ulocation, rating, item)
 - 2) Non-spatial ratings for spatial items (user, rating, item, ilocation)
 - 3) Spatial ratings for spatial items (user, ulocation, rating, item, ilocation)
- Motivation: A Study of Location-Based Ratings
 - preference locality
 - : influences recommendation using the unique preferences found within the spatial region containing the user
 - travel locality
 - : recommendation loses efficacy the further a querying user must travel to visit the destination.

Introduction

- Contributions of LARS
 - A novel location-aware recommender system capable of using three classes of location-based ratings
 - (a) a user partitioning technique
 - : exploiting user locations in a way that maximizes system scalability while not sacrificing recommendation locality
 - (b) a travel penalty technique
 - : exploiting item locations and avoiding exhaustively processing all spatial recommendation candidates
 - Experimental evidence that LARS scales to large-scale recommendation scenarios and provides better quality recommendations than traditional approaches

LARS Overview

- LARS Query Model
 - input : U(user id), K(numeric limit), L(location) output : K recommended items
 - snapshot queries & continuous queries
- Item-Based Collaborative Filtering
 - Phase I: Model Building

- Phase II: Recommendation Generation

$$P_{(u,i)} = \frac{\sum_{l \in \mathcal{L}} sim(i,l) * r_{u,l}}{\sum_{l \in \mathcal{L}} |sim(i,l)|}$$

- Three requirements for producing recommendations
 - (1) Locality
 - a spatial neighborhood
 - : ratings with user locations spatially close to the querying user location
 - (2) Scalability
 - the recommendation procedure and data structure should scale up to large number of users
 - (3) Influence

: controlling the size of the spatial neighborhood (city block, zip code, or county)

Data Structure

- For a given level h, the space is partitioned into 4^h equal area grid cells.
- In each cell, we store an item-based collaborative filtering model built using only the spatial ratings with user locations contained in the cell's spatial region.
- the root cell (level 0) = a "traditional" (i.e., non-spatial) item-based CF model

- Query Processing
 - (1) Find the lowest maintained cell C in the adaptive pyramid that contains L
 - (2) The top-k recommended items are generated using the model stored at C.
 - Continuous queries
 - : User crossing a cell boundary → Recommendation result updated
 - A cell at level h is not maintained → Go higher and find the nearest maintained ancestor cell
 - Influence level
 - default: Starting from the lowest maintained grid cell
 - → Starting from the grid cell containing the querying user location at level I

- Data Structure Maintenance
 - all location-based ratings currently in the system are used to build a complete pyramid of height H
 - \rightarrow merging step : quadrants (i.e., four cells with a common parent) at level h into their parent at level h 1
 - → maintenance on a cell-by-cell basis once it receives N% new ratings
 - : tradeoffs in scalability and locality
 - : checking (1) cell C has a child quadrant q maintained at level h + 1
 - : checking (2) none of the four cells in q have maintained children of their own
 - ⇒ Yes! quadrant q = a candidate to merge into its parent cell C
 - \Rightarrow No! cell C = a candidate to be splited into four child cells at level h+ 1

Cell Merging

- discarding an entire quadrant of cells at level h with a common parent at level h-1
- scalability ↑, locality ↓
- calculation locality_loss, scalability_gain
- (1 M) * scalability gain > M * locality loss
- M = 0: a traditional CF \leftrightarrow M = 1: maintaining all cells at all levels (no merging)
- Calculating Locality Loss
 - (1) Sample: from users who have at least one rating within C_P
 - (2) Compare : R_p (from the merged cell C_p) vs. R_u (from the localized cell $C_u \in q$)
 - (3) Average: average loss of uniqueness over all users in U

$$\frac{|R_u - R_P|}{k}$$

- Calculating scalability gain
 - (1) size_m: summing the model sizes for each of the child cells
 - (2) $size_m$ / ($size_m$ + the size of the parent cell)

User	Recommendation		Locality
	C _u	C _p	Loss
U_1	I_1, I_2, I_5, I_6	I_1, I_2, I_5, I_7	25%
U_2	I_1, I_2, I_3, I_4	I_1, I_2, I_3, I_5	25%
U_3	I_3, I_4, I_5, I_6	I_3, I_4, I_5, I_6	0%
U_4	I_3, I_4, I_6, I_8	I_3, I_4, I_5, I_7	50%
Average Locality Loss			25%

- Cell Splitting
 - creating a new cell quadrant at pyramid level h under a cell at level h-1
 - scalability ↓ , locality ↑
 - calculation locality_gain, scalability_loss
 - M * locality gain > (1 M) * scalability loss
 - Speculative splitting
 - : building each model using a random sample of only 50% of the ratings from the spatial region of each potentially split cell
- Calculating locality gain
 - : if any of the speculatively split cells do not contain ratings for enough unique items
 - → immediately set the locality gain to 0 (preventing recommendation starvation)

- Calculating scalability loss
 - estimating the storage necessary to maintain the newly split cells
 - maximum size of an item-based CF model is approximately n[I]
 - → n|I| * #bytes needed to store an item in a CF model
 - → size_s: sum of four estimated cell size
 - → size_s / (size_s + the size of the parent cell)

- Query Processing
 - a single model with travel penalty
 - ranking each spatial item i for a querying user u based on RecScore(u, i)
 - RecScore(u, i) = P(u, i) TravelPenalty(u, i)
 - P(u, i) = the standard item-based CF predicted rating of item i for user u
 - TravelPenalty(u, i) = road network travel distance between u and i normalized to the same value range as the rating scale

- Algorithm2 of Query Processing
 - 1) KNN algorithm \rightarrow R with k items with lowest travel penalty
 - 2) Setting LowestRecScore as the RecScore of the k_{th} item in R
 - 3) Retrieving items one by one in the order of their penalty score
 - 4) Calculating the maximum score(MAX_RATING- TravelPenalty(u, i)) for each item
 - 5) Early termination
 - : If item i cannot make it into the list of top-k recommended items with this maximum possible score

- Query processing uses Algorithm 2
- Different P(u,i)

: using the (localized) collaborative filtering model from the partial pyramid cell that contains the querying user

- LARS-T: LARS with only travel penalty enabled
- LARS-U: LARS with only user partitioning enabled
- LARS: LARS with both techniques enabled
- Quality Measure
 - : R (a set of k recommendations)
 - : t (each rating for items known to be liked by user)
 - : the count of how many times R contains the item associated with t

(the higher the better)

- (a) the benefit of using the travel penalty technique that recommends items within a feasible distance
- (b) user partitioning is beneficial in providing quality recommendations localized to a querying user location, even when items are not spatial

- (a) LARS is consistently twice as accurate as CF for all k
- (b) LARS-U consistently exhibits better quality than CF for sizes of K from one to ten

- (a) For LARS, increasing M results in increased storage overhead since LARS favors splitting, requiring the maintenance of more pyramid cells each with its own collaborative filtering model
- (b) increasing M results in smaller locality loss as LARS merges less and maintains more localized cells

- (a) LARSM=1 requires the highest amount of storage since it requires storage of a collaborative filtering model for all cells (in all levels) of a complete pyramid
- (b) LARS exhibits better performance than LARS-M=1 due to merging

- (a) Employing the travel penalty technique with early termination leads to better query response time
- (b) LARS exhibits a better aggregate response time since it employs the early termination algorithm using a localized collaborative filtering model to produce results while also merging cells to reduce update frequency

