
데이터사이언스대학원 석사과정 최영은

LARS
: A Location-Aware Recommender System

CONTENTS

Abstract

Introduction

Spatial User Ratings for Non-Spatial Items

Experiments

Non-Spatial User Ratings for Spatial Items

Conclusions

Abstract

• A taxonomy of three novel classes of location-based ratings

1) Spatial ratings for non-spatial items (MovieLens)

2) Non-spatial ratings for spatial items

3) Spatial ratings for spatial items (Foursquare)

• User partitioning

- exploiting user rating locations

• Travel penalty

- exploiting item locations

Introduction

• A taxonomy of three novel classes of location-based ratings

1) Spatial ratings for non-spatial items (user, ulocation, rating, item)

2) Non-spatial ratings for spatial items (user, rating, item, ilocation)

3) Spatial ratings for spatial items (user, ulocation, rating, item, ilocation)

• Motivation: A Study of Location-Based Ratings

- preference locality

: influences recommendation using the unique preferences found within the spatial

region containing the user

- travel locality

: recommendation loses efficacy the further a querying user must travel to visit the

destination.

Introduction

• Contributions of LARS

- A novel location-aware recommender system capable of using three classes of

location-based ratings

(a) a user partitioning technique

: exploiting user locations in a way that maximizes system scalability while not

sacrificing recommendation locality

(b) a travel penalty technique

: exploiting item locations and avoiding exhaustively processing all spatial

recommendation candidates

- Experimental evidence that LARS scales to large-scale recommendation scenarios

and provides better quality recommendations than traditional approaches

LARS Overview

• LARS Query Model

- input : U(user id), K(numeric limit), L(location) ☞ output : K recommended items

- snapshot queries & continuous queries

• Item-Based Collaborative Filtering

- Phase I: Model Building

: a model is built that stores for each item i ∈ I, a list L of similar items ordered by a

similarity score sim(ip, iq)

- Phase II: Recommendation Generation

Spatial User Ratings for Non-Spatial Items

• Three requirements for producing recommendations

(1) Locality

- a spatial neighborhood

: ratings with user locations spatially close to the querying user location

(2) Scalability

- the recommendation procedure and data structure should scale up to large number

of users

(3) Influence

: controlling the size of the spatial neighborhood (city block, zip code, or county)

Spatial User Ratings for Non-Spatial Items

• Data Structure

- For a given level h, the space is partitioned into 4h equal area grid cells.

- In each cell, we store an item-based collaborative filtering model built using only the

spatial ratings with user locations contained in the cell’s spatial region.

- the root cell (level 0) = a “traditional” (i.e., non-spatial) item-based CF model

Spatial User Ratings for Non-Spatial Items

• Query Processing

(1) Find the lowest maintained cell C in the adaptive pyramid that contains L

(2) The top-k recommended items are generated using the model stored at C.

- Continuous queries

: User crossing a cell boundary → Recommendation result updated

: A cell at level h is not maintained → Go higher and find the nearest maintained

ancestor cell

- Influence level

default : Starting from the lowest maintained grid cell

→ Starting from the grid cell containing the querying user location at level I

Spatial User Ratings for Non-Spatial Items

• Data Structure Maintenance

- all location-based ratings currently in the system are used to build a complete

pyramid of height H

→ merging step : quadrants (i.e., four cells with a common parent) at level h into their

parent at level h − 1

→ maintenance on a cell-by-cell basis once it receives N% new ratings

: tradeoffs in scalability and locality

: checking (1) cell C has a child quadrant q maintained at level h + 1

: checking (2) none of the four cells in q have maintained children of their own

⇒ Yes! quadrant q = a candidate to merge into its parent cell C

⇒ No! cell C = a candidate to be splited into four child cells at level h+ 1

Spatial User Ratings for Non-Spatial Items

• Cell Merging

- discarding an entire quadrant of cells at level h with a common parent at level h−1

- scalability ↑, locality↓

- calculation locality_loss, scalability_gain

- (1 −M) ∗ scalability gain > M ∗ locality loss

- M = 0 : a traditional CF ↔ M = 1 : maintaining all cells at all levels (no merging)

• Calculating Locality Loss

(1) Sample : from users who have at least one rating within CP

(2) Compare : Rp(from the merged cell Cp) vs. Ru(from the localized cell Cu ∈ q)

(3) Average : average loss of uniqueness over all users in U

Spatial User Ratings for Non-Spatial Items
• Calculating scalability gain

(1) sizem : summing the model sizes for each of the child cells

(2) sizem / (sizem + the size of the parent cell)

Spatial User Ratings for Non-Spatial Items

• Cell Splitting

- creating a new cell quadrant at pyramid level h under a cell at level h−1

- scalability ↓ , locality ↑

- calculation locality_gain, scalability_loss

- M ∗ locality gain > (1 −M) ∗ scalability loss

- Speculative splitting

: building each model using a random sample of only 50% of the ratings from the

spatial region of each potentially split cell

• Calculating locality gain

: if any of the speculatively split cells do not contain ratings for enough unique items

→ immediately set the locality gain to 0 (preventing recommendation starvation)

Spatial User Ratings for Non-Spatial Items
• Calculating scalability loss

- estimating the storage necessary to maintain the newly split cells

- maximum size of an item-based CF model is approximately n|I|

→ n|I| * #bytes needed to store an item in a CF model

→ sizes : sum of four estimated cell size

→ sizes / (sizes + the size of the parent cell)

Non-Spatial User Ratings for Spatial Items

• Query Processing

- a single model with travel penalty

- ranking each spatial item i for a querying user u based on RecScore(u, i)

- RecScore(u, i) = P(u, i) − TravelPenalty(u, i)

- P(u, i) = the standard item-based CF predicted rating of item i for user u

- TravelPenalty(u, i) = road network travel distance between u and i normalized to the

same value range as the rating scale

Non-Spatial User Ratings for Spatial Items

• Algorithm2 of Query Processing

1) KNN algorithm → R with k items with lowest travel penalty

2) Setting LowestRecScore as the RecScore of the kth item in R

3) Retrieving items one by one in the order of their penalty score

4) Calculating the maximum score(MAX_RATING- TravelPenalty(u, i)) for each item

5) Early termination

: If item i cannot make it into the list of top-k recommended items with this maximum

possible score

Spatial User Ratings for Spatial Items

• Query processing uses Algorithm 2

• Different P(u,i)

: using the (localized) collaborative filtering model from the partial pyramid cell that

contains the querying user

Experiments

• LARS-T : LARS with only travel penalty enabled

• LARS-U : LARS with only user partitioning enabled

• LARS : LARS with both techniques enabled

• Quality Measure

: R (a set of k recommendations)

: t (each rating for items known to be liked by user)

: the count of how many times R contains the item associated with t

(the higher the better)

Experiments

(a) the benefit of using the travel penalty technique that recommends items within a

feasible distance

(b) user partitioning is beneficial in providing quality recommendations localized to a

querying user location, even when items are not spatial

Experiments

(a) LARS is consistently twice as accurate as CF for all k

(b) LARS-U consistently exhibits better quality than CF for sizes of K from one to ten

Experiments

(a) For LARS, increasing M results in increased storage overhead since LARS favors

splitting, requiring the maintenance of more pyramid cells each with its own

collaborative filtering model

(b) increasing M results in smaller locality loss as LARS merges less and maintains more

localized cells

Experiments

(a) LARSM=1 requires the highest amount of storage since it requires storage of a

collaborative filtering model for all cells (in all levels) of a complete pyramid

(b) LARS exhibits better performance than LARS-M=1 due to merging

Experiments

(a) Employing the travel penalty technique with early termination leads to better query

response time

(b) LARS exhibits a better aggregate response time since it employs the early

termination algorithm using a localized collaborative filtering model to produce

results while also merging cells to reduce update frequency

THANK YOU

