LARS
: A Location-Aware Recommender System

H|O|E{AFO| A ALCHSHR M AatE £|F2

CONTENTS

N Abstract
Introduction

Spatial User Ratings for Non-Spatial Items

Non-Spatial User Ratings for Spatial Items

Experiments

<] [<] [<] [<] [<

Conclusions

Abstract

» A taxonomy of three novel classes of location-based ratings
1) Spatial ratings for non-spatial items
2) Non-spatial ratings for spatial items
3) Spatial ratings for spatial items
* User partitioning
- exploiting user rating locations
* Travel penalty

- exploiting item locations

Introduction

» A taxonomy of three novel classes of location-based ratings

1) Spatial ratings for non-spatial items (user, ulocation, rating, item)
2) Non-spatial ratings for spatial items (user, rating, item, ilocation)

3) Spatial ratings for spatial items (user, ulocation, rating, item, ilocation)
* Motivation: A Study of Location-Based Ratings

- preference locality

. influences recommendation using the unique preferences found within the spatial
region containing the user

- travel locality

: recommendation loses efficacy the further a querying user must travel to visit the

destination.

Introduction

 Contributions of LARS

- A novel location-aware recommender system capable of using three classes of
location-based ratings

(a) a user partitioning technique

. exploiting user locations in a way that maximizes system scalability while not
sacrificing recommendation locality

(b) a travel penalty technique

: exploiting item locations and avoiding exhaustively processing all spatial
recommendation candidates

- Experimental evidence that LARS scales to large-scale recommendation scenarios

and provides better quality recommendations than traditional approaches

LARS Overview

* LARS Query Model
- input : U(user id), K(numeric limit), L(location) = output : K recommended items

- snapshot queries & continuous queries Similarity List

Item-Based Collaborative Filtering b o [7 [6P is]4

- Phase I: Model Building L Iy [ST] 2
: @ model is built that stores for each item i € |, a list L of similar items ordered by a
similarity score sim(ip, iq)

- Phase II: Recommendation Generation

> e SIM(T, 1) * 7y
Zleﬁ sim (i,)]

Plu,iy =

Spatial User Ratings for Non-Spatial Items

» Three requirements for producing recommendations
(1) Locality

- a spatial neighborhood

: ratings with user locations spatially close to the querying user location
(2) Scalability
- the recommendation procedure and data structure should scale up to large number

of users

(3) Influence

: controlling the size of the spatial neighborhood (city block, zip code, or county)

Spatial User Ratings for Non-Spatial Items

 Data Structure

- For a given level h, the space is partitioned into 4" equal area grid cells.

- In each cell, we store an item-based collaborative filtering model built using only the

spatial ratings with user locations contained in the cell’s spatial region.

- the root cell (level 0) = a “traditional” (i.e., non-spatial) item-based CF model

Model

CID

4. Entire System Area (level 0)

2x2 Grid (level 1)

Spatial User Ratings for Non-Spatial Items

* Query Processing
(1) Find the lowest maintained cell C in the adaptive pyramid that contains L
(2) The top-k recommended items are generated using the model stored at C.
- Continuous queries
: User crossing a cell boundary - Recommendation result updated
: A cell at level h is not maintained — Go higher and find the nearest maintained
ancestor cell
- Influence level
default : Starting from the lowest maintained grid cell

— Starting from the grid cell containing the querying user location at level |

Spatial User Ratings for Non-Spatial Items

« Data Structure Maintenance
- all location-based ratings currently in the system are used to build a complete
pyramid of height H
— merging step : quadrants (i.e., four cells with a common parent) at level h into their
parent at level h — 1
— maintenance on a cell-by-cell basis once it receives N% new ratings
: tradeoffs in scalability and locality
: checking (1) cell C has a child quadrant g maintained at level h + 1
: checking (2) none of the four cells in g have maintained children of their own
= Yes! quadrant g = a candidate to merge into its parent cell C

= Nol! cell C = a candidate to be splited into four child cells at level h+ 1

Spatial User Ratings for Non-Spatial Items

* Cell Merging
- discarding an entire quadrant of cells at level h with a common parent at level h—1
- scalability 1, locality |
- calculation locality_loss, scalability_gain
- (1 — M) * scalability gain > M * |ocality loss
- M =0 : a traditional CF <+ M = 1 : maintaining all cells at all levels (no merging)
 Calculating Locality Loss
(1) Sample : from users who have at least one rating within C;

| R,—Rp|

(2) Compare : R (from the merged cell C) vs. R (from the localized cell C, € q)

k

(3) Average : average loss of uniqueness over all users in U

Spatial User Ratings for Non-Spatial Items

 Calculating scalability gain
(1) size,, : summing the model sizes for each of the child cells

(2) size,,, / (size,, + the size of the parent cell)

Cp s/ eUl uze User Recommendation Locality
U3 o U4 Level\h -1 C, C, Loss

U, L LII | 1,L 1,1 | 25%

U, I L LI | I, LI, 25%
C;, 3 Uzo U, L1, 1,0 | I, 1,11, 0%
—(,
U, LI, I 1| I, 1, 1,1, 50%
/ / o U4 ' /
\ Average Locality Loss 25%
Level h verag ity °

Spatial User Ratings for Non-Spatial Items

Cell Splitting

- creating a new cell quadrant at pyramid level h under a cell at level h—1

- scalability ! , locality 1

- calculation locality_gain, scalability_loss

- M * |ocality gain > (1 — M) * scalability loss

- Speculative splitting

: building each model using a random sample of only 50% of the ratings from the
spatial region of each potentially split cell

Calculating locality gain

. if any of the speculatively split cells do not contain ratings for enough unique items

— immediately set the locality gain to O (preventing recommendation starvation)

Spatial User Ratings for Non-Spatial Items

 Calculating scalability loss
- estimating the storage necessary to maintain the newly split cells
- maximum size of an item-based CF model is approximately nll]|
— nl|l| * #bytes needed to store an item in a CF model
— size. : sum of four estimated cell size

— size, / (size, + the size of the parent cell)

Non-Spatial User Ratings for Spatial Items

* Query Processing
- a single model with travel penalty
- ranking each spatial item i for a querying user u based on RecScore(u, i)
- RecScore(u, i) = P(u, i) — TravelPenalty(u, i)
- P(u, i) = the standard item-based CF predicted rating of item i for user u
- TravelPenalty(u, i) = road network travel distance between u and i normalized to the

same value range as the rating scale

Non-Spatial User Ratings for Spatial Items

* Algorithm2 of Query Processing
1) KNN algorithm — R with k items with lowest travel penalty
2) Setting LowestRecScore as the RecScore of the ky, item in R
3) Retrieving items one by one in the order of their penalty score
4) Calculating the maximum score(MAX_RATING- TravelPenalty(u, i)) for each item
5) Early termination

. If item i cannot make it into the list of top-k recommended items with this maximum

possible score

Spatial User Ratings for Spatial Items

* Query processing uses Algorithm 2
« Different P(u,i)

: using the (localized) collaborative filtering model from the partial pyramid cell that

contains the querying user

Experiments

LARS-T : LARS with only travel penalty enabled

LARS-U : LARS with only user partitioning enabled
LARS : LARS with both techniques enabled

Quality Measure

' R (a set of k recommendations)

: t (each rating for items known to be liked by user)

: the count of how many times R contains the item associated with t
(the higher the better)

Experiments

80 350 | LARS-U —@—
260 | | CF —+—
240 |] 300
> 220 | L LARS @ > 220
= _ UK = 200 |
S 200 LARS-T —] S
S 180 | CF —— | g 150
g/ 0 o0 o0 0 o o4 bl
0% 50
120 T 0 —
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of Pyramid Levels Number of Pyramid Levels
(a) Foursquare data (b) MovielLens data

(a) the benefit of using the travel penalty technique that recommends items within a

feasible distance
(b) user partitioning is beneficial in providing quality recommendations localized to a

guerying user location, even when items are not spatial

Experiments

300 LARS —@— 350
250 | LARS-U —K—

LARS-T —— 300 |
200 | CF —— 250 |

200 |
150
100
50
o+—r—+r +
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
k k

150 ¢
100 |
50

0

Quality
L
Quality

(a) Foursquare data (b) Movielens data

(@) LARS is consistently twice as accurate as CF for all k

(b) LARS-U consistently exhibits better quality than CF for sizes of K from one to ten

Experiments

0 0.10.20.305 0.6 0.7 0.8 0.9 1

(a) Storage

10 |

0

f 70 .

6| e 50
o > 50| |
G 3 - %
> 4l LARS-M=0 —+— | 8 40! LARS-M=0 —+— |
o LARS-M=1 —>¢— - LARS-M=1 —%¢—
& 3| LARS —@— | = 30 LARS —@— |
2 ﬁ 20 L
n 2t 8

1 I —

0

SN NN N N S N N

0 0.10.20.30.40.50.60.70.80.9 1
M

(b) Locality

(@) For LARS, increasing M results in increased storage overhead since LARS favors
splitting, requiring the maintenance of more pyramid cells each with its own

collaborative filtering model
(b) increasing M results in smaller locality loss as LARS merges less and maintains more

localized cells

Experiments

] LARS-M=0 —+ —
6 F'LARS-M=1 —<—
14 | LARS —@—

LARS-M=0 —+ —
"LARS-M=1 —<—
LARS —@—

Storage (GB)
O = NMNWHhOO NO®

10 50 100 200 500 10 50 100 150 200
Number of Ratings (* 1000) Ratings Updates So Far (* 1000)

Aggregate Maint Time (* 1K sec)
co

(a) Storage (b) Maintenance

(@) LARSM=1 requires the highest amount of storage since it requires storage of a
collaborative filtering model for all cells (in all levels) of a complete pyramid
(b) LARS exhibits better performance than LARS-M=1 due to merging

Experiments

)
Q
(7] . T
200 s 2 CF ——
2 £ LARS-M=1 —<—
< 150 = 15| LARS-U —x—
£ 2
|—
2 100 §_ 1
5 T
2 50| o 057
[<}] ©
£ 4 5 & A
0 - - - 5 0 —
10 50 100 200 500 g’ 06 3 6.2 93 124 155 18.6
Number of Ratings (*1000) Travel Distance (miles)
(a) Snapshot Queries (b) Continuous Queries

(a) Employing the travel penalty technique with early termination leads to better query
response time

(b) LARS exhibits a better aggregate response time since it employs the early
termination algorithm using a localized collaborative filtering model to produce

results while also merging cells to reduce update frequency

THANK YOU

