DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

Guo et. al., (IJCAI `17)

Hyunji Choi May 17th, 2021

Click-Through Rate Prediction

- Probability a user will click on a recommended item.
- Rank the output of recommender by CTR.

https://blog.creatopy.com/average-display-click-through-rate-ctr/

Implicit feature interactions behind click behaviors

CTR Prediction Model

- $\hat{y} = CTR_model(x)$
- Concatenate categorical & continuous fields.
- High-dimensional, sparse feature vector $\mathbf{x} \rightarrow$ dense embeddings.

Effectively Modeling Feature Interactions

- Feature: Generalized linear model
- Low-order interactions: Factorization Machine

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

- High-order interactions: DNN-based models
 - FNN (Zhang et al., 2016)
 - PNN (Qu et al., 2016)
 - Wide & Deep (Cheng et al., 2016)

DNN-based CTR Prediction Models: FNN

- FM pre-training \rightarrow DNN
- Factorization-machine supported NN

- Training overhead.
- Embedding parameters over affected by FM.
- Captures only high-order feature interactions.

RecSys, 2021 Spring

DNN-based CTR Prediction Models: PNN

- **Product layer** \rightarrow **DNN**
- Product-based NN

- Training complexity.
- Captures only high-order feature interactions.

RecSys, 2021 Spring

DNN-based CTR Prediction Models: Wide & Deep

- FM + DNN simultaneously.
- Captures both low- and high-order interactions.

- Needs expertise feature engineering.
- Separate types of inputs.

Both low- and high-order feature interactions are important

• Wide & Deep outperformed Wide and Deep.

Table 1	: Offline & c	online	metrics	of dif	ferent	models.
Online	Acquisition	Gain	is relati	ve to	the co	ontrol.

Model	Offline AUC	Online Acquisition Gain
Wide (control)	0.726	0%
Deep	0.722	+2.9%
Wide & Deep	0.728	+3.9%

Approach

- FM and deep component share the same input.
- $\hat{y} = sigmoid(y_{FM} + y_{DNN})$

FM Component

Deep Component

•
$$y_{DNN} = \sigma(W^{|H|+1} \cdot a^H + b^{|H|+1})$$

- Structure of Embedding Layer
- FM per field: output ei length is the same (k).

- Criteo: 45 million users' click records.
- Company*
 - 7 consecutive days of users' click records from the App Store for training.
 - Next 1 day for testing.
 - 1 billion records with app, user, and context features.

- AUC
- Logloss

- LR
- FM
- FNN
- PNN (inner / outer / both)
- Wide & Deep
- Wide & Deep replaced LR with FM
- DeepFM

DeepFM Training is Efficient

- Pre-training is inefficient.
- DeepFM is efficient on both CPU and GPU.

	Company*		Criteo	
	AUC	LogLoss	AUC	LogLoss
LR	0.8640	0.02648	0.7686	0.47762
FM	0.8678	0.02633	0.7892	0.46077
FNN	0.8683	0.02629	0.7963	0.45738
IPNN	0.8664	0.02637	0.7972	0.45323
OPNN	0.8658	0.02641	0.7982	0.45256
PNN*	0.8672	0.02636	0.7987	0.45214
LR & DNN	0.8673	0.02634	0.7981	0.46772
FM & DNN	0.8661	0.02640	0.7850	0.45382
DeepFM	0.8715	0.02618	0.8007	0.45083

Table 2: Performance on CTR prediction.

- LR vs others: learning feature interactions is important.
- FM / FNN / PNN vs DeepFM: learning both low- and high-order interactions is critical.
- LR&DNN vs DeepFM: sharing feature embedding improves the performance.

Hyper-Parameter Study (Network)

- Over-complicated model is easy to overfit.
 - Number of neurons per layer: 200 or 400.
 - Number of hidden layers: about 3.
- Constant network shape is empirically better.

Conclusion

- DeepFM outperforms the state-of-the-art models.
 - Learns both high- and low-order feature interactions.
 - Shares feature embedding to avoid feature engineering.
- DeepFM shows comparable efficiency.
 - No pre-training.
 - Moderate training complexity.