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Click-Through Rate Prediction

e Probability a user will click on a recommended item.

e Rank the output of recommender by CTR.

https://blog.creatopy.com/average-display-click-through-rate-ctr/
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Implicit feature interactions behind click behaviors
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CTR Prediction Model

e = CTR model(x)

e Concatenate categorical & continuous fields.

e High-dimensional, sparse feature vector x — dense embeddings.

User Gender Edf time clicked
1 0 1 0 1 0 25 1 0 1 |13 1
1 0 1 0 1 0 27 0 1 1 |13 0
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0 1 0 1 1 0 23 0 1 1 | 15 ?
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Effectively Modeling Feature Interactions

e Feature: Generalized linear model

e Low-order interactions: Factorization Machine
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e High-order interactions: DNN-based models
o FNN (Zhang et al., 2016)
o PNN (Qu et al., 2016)
o Wide & Deep (Cheng et al., 2016)
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DNN-based CTR Prediction Models: FNN

e FM pre-training — DNN
e Factorization-machine supported NN

CTR
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o Training overhead.
o Embedding parameters over affected by FM.

o Captures only high-order feature interactions.
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DNN-based CTR Prediction Models: PNN

e Product layer — DNN
e Product-based NN
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o Training complexity.

o Captures only high-order feature interactions.
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DNN-based CTR Prediction Models: Wide & Deep

e FM + DNN simultaneously.

e Captures both low- and high-order interactions.
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o Needs expertise feature engineering.

o Separate types of inputs.
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Both low- and high-order feature interactions are important

e Wide & Deep outperformed Wide and Deep.
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Table 1: Offline & online metrics of different models.
Online Acquisition Gain is relative to the control.

Model Offline AUC Online Acquisition Gain
Wide (control) 0.726 0%
Deep 0.722 +2.9%
Wide & Deep 0.728 +3.9%
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Approach

e FM and deep component share the same input.

o 4 = sigmoid(Yyrym + YDNN)
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FM Component
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Deep Component

o YUpnn = o(WIHIFL. gf 4 plHIFL)

e Weight~1 Connectionl

— Normal Connection
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Deep Component

e Structure of Embedding Layer

e FM per field: output ei length is the same (k).

k=5
Embedding
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Data and Metric

e Criteo: 45 million users’ click records.
e Company*

o 7 consecutive days of users’ click records from the App Store for training.
o Next 1 day for testing.

o 1 billion records with app, user, and context features.

e AUC

e Logloss
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Model Comparison

e LR

e FM

e FNN

e PNN (inner / outer / both)

e Wide & Deep

e Wide & Deep replaced LR with FM
e DeepFM
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DeepFM Training is Efficient
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e Pre-training is inefficient.
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e DeepFM is efficient on both CPU and GPU.
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DeepFM outperforms other models in CTR prediction

Table 2: Performance on CTR prediction.

Companyx Criteo
AUC | Logloss | AUC | LogLoss
LR 0.8640 | 0.02648 | 0.7686 | 0.47762
FM 0.8678 | 0.02633 | 0.7892 | 0.46077

FNN 0.8683 | 0.02629 | 0.7963 | 0.45738
IPNN 0.8664 | 0.02637 | 0.7972 | 0.45323
OPNN 0.8658 | 0.02641 | 0.7982 | 0.45256
PNNx* 0.8672 | 0.02636 | 0.7987 | 0.45214
LR & DNN | 0.8673 | 0.02634 | 0.7981 | 0.46772
FM & DNN | 0.8661 | 0.02640 | 0.7850 | 0.45382
DeepFM 0.8715 | 0.02618 | 0.8007 | 0.45083

e LR vs others: learning feature interactions is important.

e FM/FNN/PNN vs DeepFM: learning both low- and high-order
interactions is critical.

e LR&DNN vs DeepFM: sharing feature embedding improves the

performance.
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Hyper-Parameter Study (Network)

e Over-complicated model is easy to overfit.

o Number of neurons per layer: 200 or 400.

o Number of hidden layers: about 3.

e Constant network shape is empirically better.
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Conclusion

e DeepFM outperforms the state-of-the-art models.

o Learns both high- and low-order feature interactions.

o Shares feature embedding to avoid feature engineering.
e DeepFM shows comparable efficiency.
o No pre-training.

o Moderate training complexity.
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