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Overview
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Click-Through Rate Prediction
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https://blog.creatopy.com/average-display-click-through-rate-ctr/

● Probability a user will click on a recommended item.

● Rank the output of recommender by CTR.
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Implicit feature interactions behind click behaviors
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● Device

● Gender

● Age

● Time

● Season

● Location

● UI style

● Cost

● Functions
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CTR Prediction Model
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●

● Concatenate categorical & continuous fields.

● High-dimensional, sparse feature vector x → dense embeddings.
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Effectively Modeling Feature Interactions
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● Feature: Generalized linear model

● Low-order interactions: Factorization Machine

● High-order interactions: DNN-based models
○ FNN (Zhang et al., 2016)

○ PNN (Qu et al., 2016)

○ Wide & Deep (Cheng et al., 2016)
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DNN-based CTR Prediction Models: FNN
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● FM pre-training → DNN

● Factorization-machine supported NN

○ Training overhead.

○ Embedding parameters over affected by FM.

○ Captures only high-order feature interactions.
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DNN-based CTR Prediction Models: PNN
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● Product layer → DNN

● Product-based NN

○ Training complexity.

○ Captures only high-order feature interactions.
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DNN-based CTR Prediction Models: Wide & Deep
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● FM + DNN simultaneously.

● Captures both low- and high-order interactions.

○ Needs expertise feature engineering.

○ Separate types of inputs.
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Both low- and high-order feature interactions are important
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● Wide & Deep outperformed Wide and Deep.
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Approach
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● FM and deep component share the same input.

●
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FM Component
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Deep Component
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●

concat
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Deep Component
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● Structure of Embedding Layer

● FM per field: output ei length is the same (k).
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Data and Metric
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● Criteo: 45 million users’ click records.

● Company*

○ 7 consecutive days of users’ click records from the App Store for training.

○ Next 1 day for testing.

○ 1 billion records with app, user, and context features.

● AUC

● Logloss
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Model Comparison
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● LR

● FM

● FNN

● PNN (inner / outer / both)

● Wide & Deep 

● Wide & Deep replaced LR with FM

● DeepFM
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DeepFM Training is Efficient
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● Pre-training is inefficient.

● DeepFM is efficient on both CPU and GPU.
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DeepFM outperforms other models in CTR prediction
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● LR vs others: learning feature interactions is important.

● FM / FNN / PNN vs DeepFM: learning both low- and high-order 

interactions is critical.

● LR&DNN vs DeepFM: sharing feature embedding improves the 

performance. 
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Hyper-Parameter Study (Network)
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● Over-complicated model is easy to overfit.
○ Number of neurons per layer: 200 or 400.

○ Number of hidden layers: about 3.

● Constant network shape is empirically better.



RecSys, 2021 Spring

Conclusion
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● DeepFM outperforms the state-of-the-art models.

○ Learns both high- and low-order feature interactions.

○ Shares feature embedding to avoid feature engineering.

● DeepFM shows comparable efficiency.

○ No pre-training.

○ Moderate training complexity.


