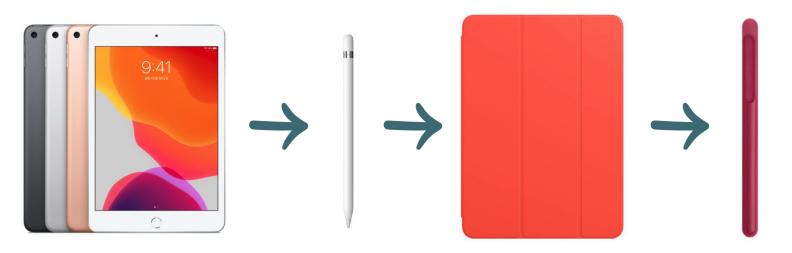
Self-Attentive Sequential Recommendation

Wang-Cheng Kang, Julian McAuley (ICDM `18)

Hyunji Choi June 7th, 2021

Sequential Recommendation

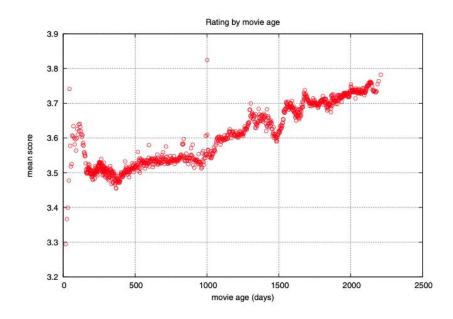
• Combine personalized models of user behavior with context based on users' recent actions.



www.apple.com

Sequential Recommendation

• Time matters in Temporal Recommendation (ex. timeSVD++).



$$b_{ui}(t) = \mu + b_u + \alpha_u \cdot \operatorname{dev}_u(t) + b_{u,t} + (b_i + b_{i,\operatorname{Bin}(t)}) \cdot c_u(t)$$

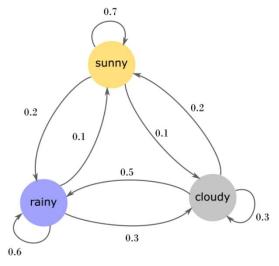
Collaborative Filtering with Temporal Dynamics

Order matters in Sequential Recommendation.

Two Approaches of Sequential Recommendation

Markov Chain

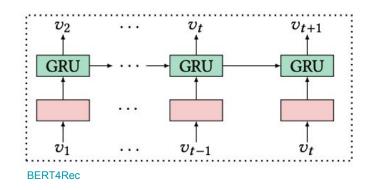
- Use last few activities.
- \circ Low order (<= 5) only.
- Works well with sparse data.
- P(sunny | rainy, cloudy, sunny, sunny)?



https://deparkes.co.uk/2020/08/08/markov-chains/

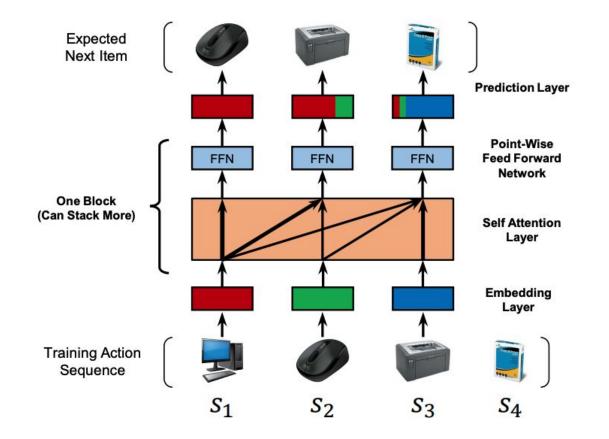
• RNN

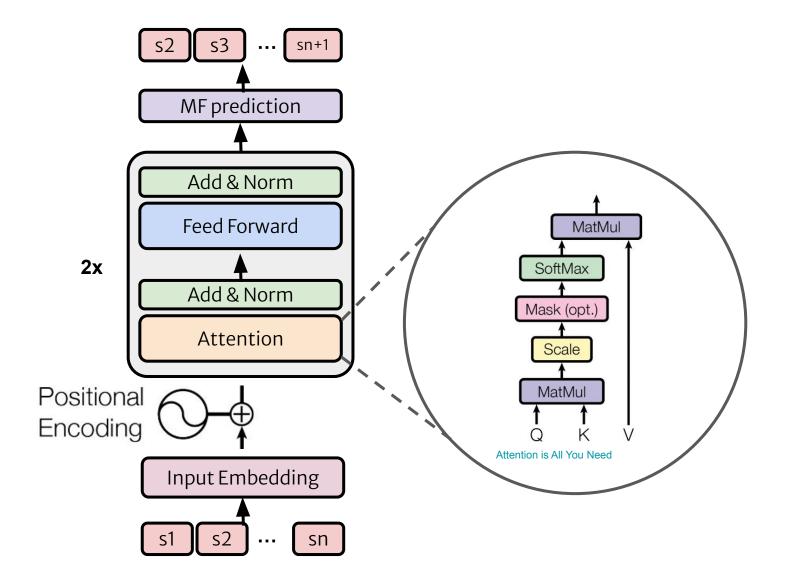
- Captures long-range context.
- Works well in dense data.
- Inefficient training time.

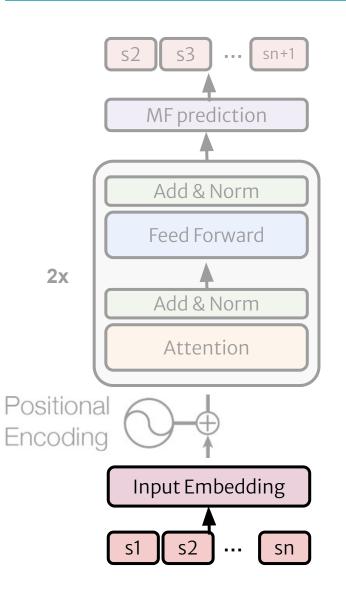


Self-Attentive Approach

• Capture long-term semantics + Select relatively few actions.

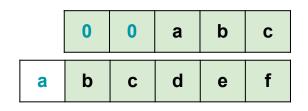






• Sequence transformation

Maximum length of sequence: n = 5

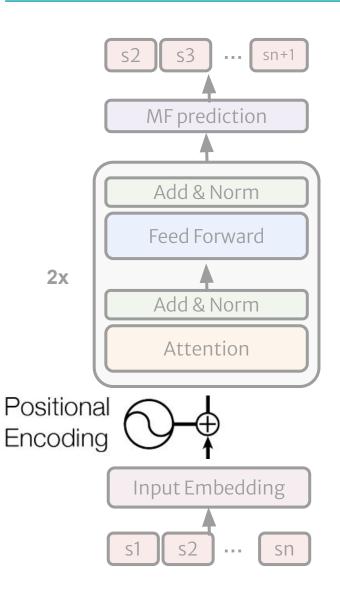


• Input embedding matrix

Item embedding dimension: d = 3

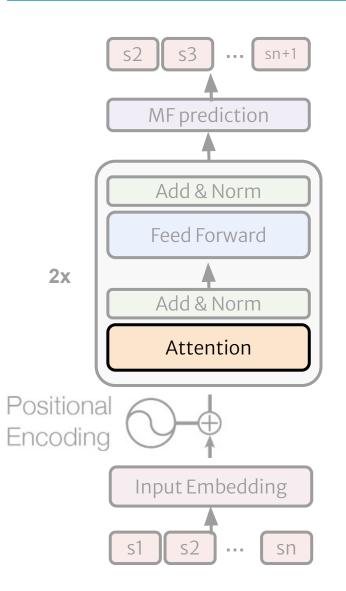
b	C	d	е	f
---	---	---	---	---

0.2	0.3	0.1	0.2	0.4
0.5	0.2	0.3	0.4	0.6
0.7	0.9	0.1	0.8	0.5



Positional embedding
Order info in n x d matrix: learnable

Self-Attention Layer



• Scaled dot-product attention

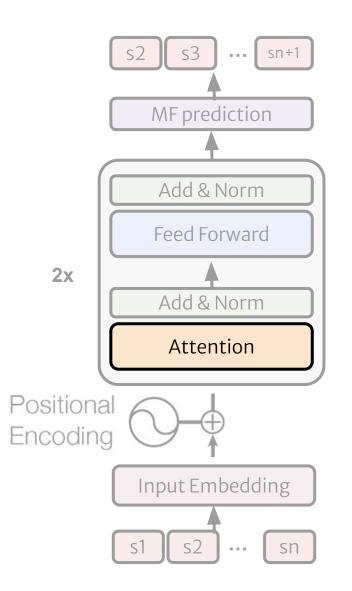
Attention
$$(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d}}\right)\mathbf{V}$$

Weighted sum of V, where weight is relevance of Q and K.

	k1	k2	k3	k4	k5
			0.1		
q2	0.5	0.2	0.3	0.4	0.6
q3	0.7	0.9	0.1	0.8	0.5

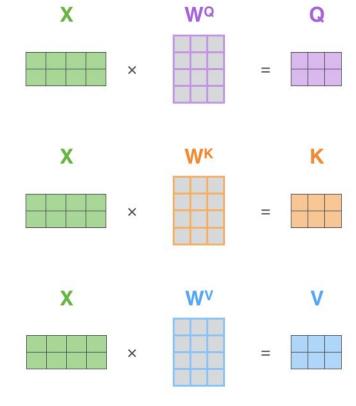
v1	0.2	0.3
v2	0.5	0.2
v3	0.7	0.9
v4	0.4	0.3
v5	0.1	0.2

Self-Attention Layer



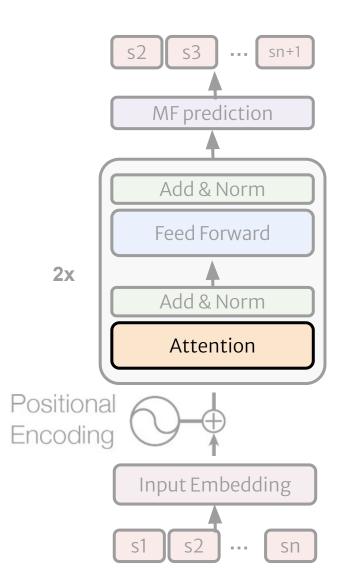
• Linear projections

$$\mathbf{S} = \mathrm{SA}(\widehat{\mathbf{E}}) = \mathrm{Attention}(\widehat{\mathbf{E}}\mathbf{W}^Q, \widehat{\mathbf{E}}\mathbf{W}^K, \widehat{\mathbf{E}}\mathbf{W}^V)$$



https://jalammar.github.io/illustrated-transformer/

Self-Attention Layer

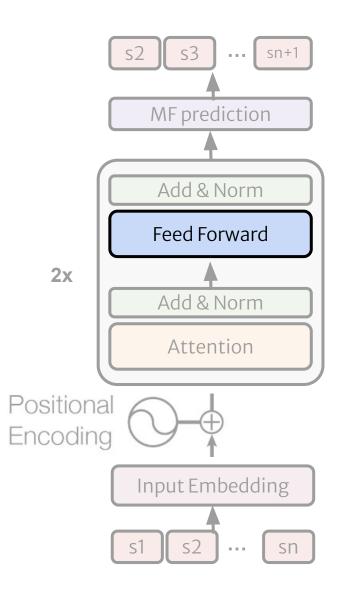


• Causality masking

q1	0.9	-99	-99	
q2	0.5	0.9	-99	
q3	0.7	0.7	1.0	

v1	0.2	0.3		
v2	0.5	0.2		
v3	0.7	0.9		

Point-Wise Feed-Forward Network



Non-linearity

- Si share weights.
- Layers do not share weights.
- Si and Sj have no interactions.

$$\mathbf{F}_i = \text{FFN}(\mathbf{S}_i) = \text{ReLU}(\mathbf{S}_i \mathbf{W}^{(1)} + \mathbf{b}^{(1)}) \mathbf{W}^{(2)} + \mathbf{b}^{(2)}$$

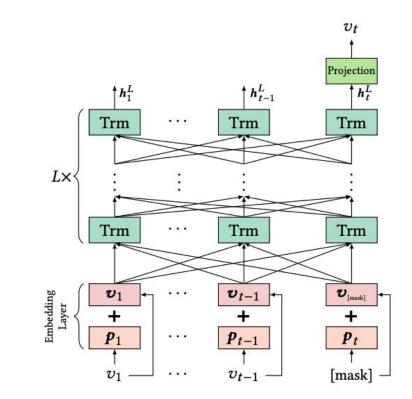
SASRec vs BERT4Rec

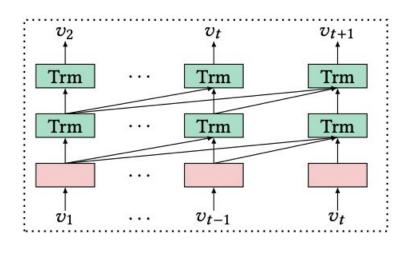
• SASRec

- Uni-directional.
- Causality masking.

• BERT4Rec

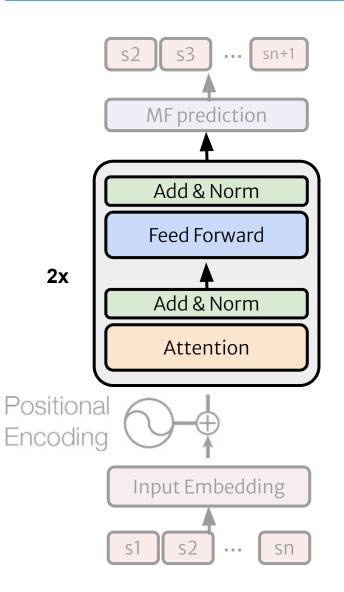
- Bi-directional.
- Cloze task.





BERT4Rec

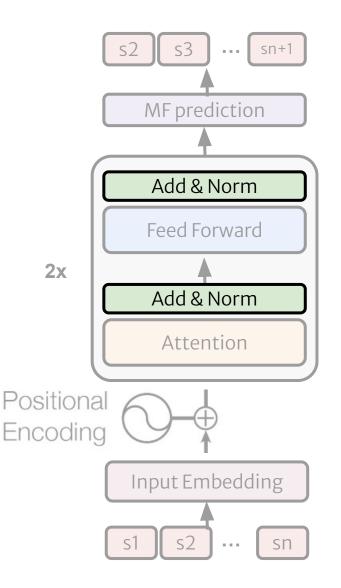
Stacking Self-Attention Blocks



• Learn high-order item transactions.

• Problems

- Overfitting
- Vanish gradients
- More training time



g(x) = x + Dropout(g(LayerNorm(x)))

Residual Connections

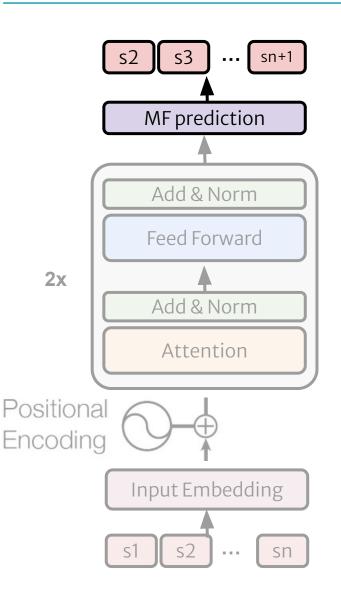
Propagate low-layer features.

• Layer Normalization

Stabilize and Accelerate.

Dropout

Prevent overfitting.



Matrix Factorization

Relevance of item i given first t items:

$$r_{i,t} = \mathbf{F}_t^{(b)} \mathbf{N}_i^T$$

• Shared item embedding

Reduce model size, alleviate overfitting.

Training

Objective function: binary cross entropy loss

$$-\sum_{\mathcal{S}^u \in \mathcal{S}} \sum_{t \in [1,2,\ldots,n]} \left[\log(\sigma(r_{o_t,t})) + \sum_{j \notin \mathcal{S}^u} \log(1 - \sigma(r_{j,t})) \right]$$

For all users and timestamp Ground truth score

Negative sample score

- Time complexity: $O(n^2d + nd^2)$
 - Fully parallelizable self-attention layer. Ο
 - Ten times faster than CNN, RNN based models. Ο
 - Easily scale n to a few hundred. Ο

Data and Metric

- Amazon Beaty, Games: high sparsity.
- Steam
- MovieLens-1M: dense.

- Hit Rate@10: GT in top 10.
- NDCG@10: larger weights on higher positions.

Model Comparison

• General

- PopRec
- Bayesian Personalized Ranking

• First order Markov chain

- Factorized Markov Chains
- Factorized personalized Markov Chains
- Translation-based Recommendation

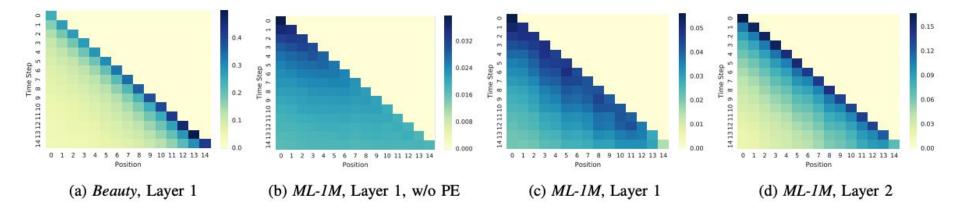
RNN/CNN based

- GRU4Rec
- GRU4Rec+
- Convolutional Sequence Embeddings

Detect	Metric	(a)	(b)	(c)	(d)	(d) (e)	(f)	(g)	(h)	(i)	Improvement vs.	
Dataset	Wieuric	PopRec	BPR	FMC	FPMC	TransRec	GRU4Rec	GRU4Rec ⁺	Caser	SASRec	(a)-(e)	(f)-(h)
Beauty	Hit@10 NDCG@10	0.4003 0.2277	0.3775 0.2183	0.3771 0.2477	0.4310 0.2891	$\frac{0.4607}{0.3020}$	0.2125 0.1203	0.3949 0.2556	0.4264 0.2547	0.4854 0.3219	5.4% 6.6%	13.8% 25.9%
Games	Hit@10 NDCG@10	0.4724 0.2779	0.4853 0.2875	0.6358 0.4456	$0.6802 \\ 0.4680$	$\frac{0.6838}{0.4557}$	0.2938 0.1837	0.6599 <u>0.4759</u>	$0.5282 \\ 0.3214$	0.7410 0.5360	8.5% 14.5%	12.3% 12.6%
Steam	Hit@10 NDCG@10	0.7172 0.4535	0.7061 0.4436	0.7731 0.5193	0.7710 0.5011	0.7624 0.4852	0.4190 0.2691	$\frac{0.8018}{0.5595}$	0.7874 0.5381	0.8729 0.6306	13.2% 21.4%	8.9% 12.7%
ML-1M	Hit@10 NDCG@10	0.4329 0.2377	0.5781 0.3287	0.6986 0.4676	0.7599 0.5176	0.6413 0.3969	0.5581 0.3381	0.7501 0.5513	<u>0.7886</u> <u>0.5538</u>	0.8245 0.5905	8.5% 14.1%	4.6% 6.6%

- Better than all 8 models.
- Adaptively attend items within different ranges.

Attention works on positions



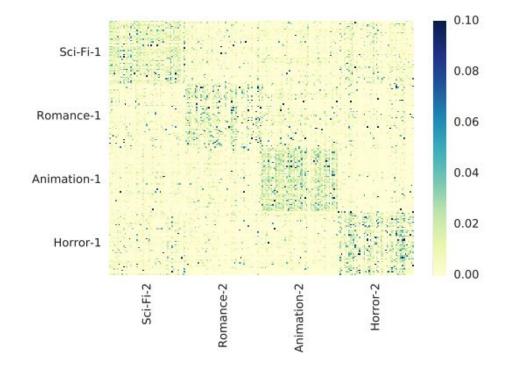
- (a)-(c) Adaptive attention to dataset types.
- (b)-(c) Effect of positional embeddings.
- (c)-(d) Higher block attends to more recent items.

RecSys, 2021 Spring

Architecture	Beauty	Games	Steam	ML-1M
(0) Default	0.3142	0.5360	0.6306	0.5905
(1) Remove PE	0.3183	0.5301	0.6036	0.5772
(2) Unshared IE	0.2437↓	0.4266↓	0.4472↓	0.4557↓
(3) Remove RC	0.2591↓	0.4303↓	0.5693	0.5535
(4) Remove Dropout	0.2436↓	0.4375↓	0.5959	0.5801
(5) 0 Block (b=0)	0.2620↓	0.4745↓	0.5588↓	0.4830↓
(6) 1 Block (b=1)	0.3066	0.5408	0.6202	0.5653
(7) 3 Blocks (b=3)	0.3078	0.5312	0.6275	0.5931
(8) Multi-Head	0.3080	0.5311	0.6272	0.5885

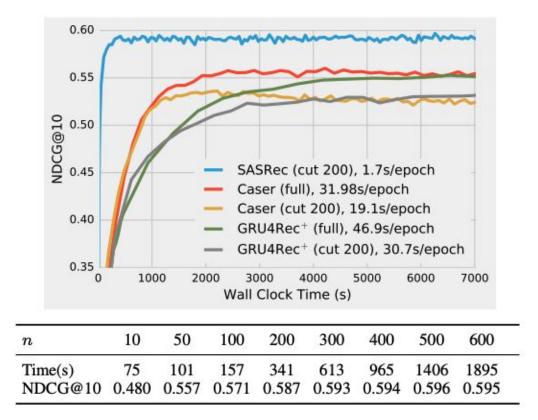
- Positional embedding is important in dense dataset.
- Last few features are critical in sparse dataset.
- Dropout, sharing item embedding prevents overfitting.

Attention works on items



• Attention mechanism can identify similar items.

SASRec is efficient and scalable



- SASRec runs and converges fast.
- Easily scale to a few hundred actions.

Conclusion

- A novel self-attention based sequential model.
- Models the entire user sequence and with adaptive, position-aware,

and hierarchical item similarity model.

• An order of magnitude faster than CNN/RNN based approaches due

to fully parallelizable attention layer.