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Sequential Recommendation
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● Combine personalized models of user behavior with context based 

on users’ recent actions.

www.apple.com
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Sequential Recommendation
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● Time matters in Temporal Recommendation (ex. timeSVD++).

● Order matters in Sequential Recommendation.

Collaborative Filtering with Temporal Dynamics
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Two Approaches of Sequential Recommendation
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● Markov Chain
○ Use last few activities.

○ Low order (<= 5) only.

○ Works well with sparse data.

○ P(sunny | rainy, cloudy, sunny, sunny)?

● RNN
○ Captures long-range context.

○ Works well in dense data.

○ Inefficient training time.

https://deparkes.co.uk/2020/08/08/markov-chains/

BERT4Rec
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Self-Attentive Approach
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● Capture long-term semantics + Select relatively few actions.
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Overview
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Attention is All You Need
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Embedding Layer
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● Sequence transformation

Maximum length of sequence: n = 5

● Input embedding matrix

Item embedding dimension: d = 3
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Embedding Layer
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● Positional embedding

Order info in n x d matrix: learnable
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Self-Attention Layer

9

● Scaled dot-product attention

Weighted sum of V, where weight 

is relevance of Q and K.
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Self-Attention Layer
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● Linear projections
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https://jalammar.github.io/illustrated-transformer/
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Self-Attention Layer
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● Causality masking
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Point-Wise Feed-Forward Network
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● Non-linearity
○ Si share weights.

○ Layers do not share weights.

○ Si and Sj have no interactions.
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SASRec vs BERT4Rec
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● BERT4Rec
○ Bi-directional.

○ Cloze task.

 

● SASRec
○ Uni-directional.

○ Causality masking.

 

BERT4Rec
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Stacking Self-Attention Blocks
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● Learn high-order item transactions.

● Problems
○ Overfitting

○ Vanish gradients

○ More training time
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Stacking Self-Attention Blocks
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MF prediction
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● Residual Connections

Propagate low-layer features.

● Layer Normalization

Stabilize and Accelerate.

● Dropout

Prevent overfitting.

 

Add & Norm

Add & Norm
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Prediction Layer
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● Matrix Factorization

Relevance of item i given first t items:

● Shared item embedding

Reduce model size, alleviate overfitting.
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Training
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● Objective function: binary cross entropy loss

● Time complexity:
○ Fully parallelizable self-attention layer.

○ Ten times faster than CNN, RNN based models.

○ Easily scale n to a few hundred.

For all users and timestamp Ground truth score Negative sample score
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Data and Metric
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● Amazon Beaty, Games: high sparsity.

● Steam

● MovieLens-1M: dense.

● Hit Rate@10: GT in top 10.

● NDCG@10: larger weights on higher positions.
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Model Comparison
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● General
○ PopRec

○ Bayesian Personalized Ranking

● First order Markov chain
○ Factorized Markov Chains

○ Factorized personalized Markov Chains

○ Translation-based Recommendation

● RNN/CNN based
○ GRU4Rec

○ GRU4Rec+

○ Convolutional Sequence Embeddings
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SASRec shows SOTA recommendation performance
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● Better than all 8 models.

● Adaptively attend items within different ranges.



RecSys, 2021 Spring

Attention works on positions
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● (a)-(c) Adaptive attention to dataset types.

● (b)-(c) Effect of positional embeddings.

● (c)-(d) Higher block attends to more recent items.
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Ablation Study
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● Positional embedding is important in dense dataset.

● Last few features are critical in sparse dataset.

● Dropout, sharing item embedding prevents overfitting.
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Attention works on items
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● Attention mechanism can identify similar items.
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SASRec is efficient and scalable
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● SASRec runs and converges fast.

● Easily scale to a few hundred actions.



RecSys, 2021 Spring

Conclusion
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● A novel self-attention based sequential model.

● Models the entire user sequence and with adaptive, position-aware, 

and hierarchical item similarity model.

● An order of magnitude faster than CNN/RNN based approaches due 

to fully parallelizable attention layer.


